A compact microchip atomic clock based on all-optical interrogation of ultra-cold trapped Rb atoms

被引:0
|
作者
D. M. Farkas
A. Zozulya
D. Z. Anderson
机构
[1] University of Colorado,JILA
[2] and NIST,Department of Physics
[3] Worcester Polytechnic Institute,undefined
来源
Applied Physics B | 2010年 / 101卷
关键词
Rabi Frequency; Atomic Clock; Coupling Beam; Zehnder Interferometer; Light Shift;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a compact atomic clock that uses all-optical interrogation of ultra-cold Rb atoms that are magnetically trapped near the surface of an atom microchip. The interrogation scheme, which combines electromagnetically induced transparency with Ramsey’s method of separated oscillatory fields, can achieve an atomic shot-noise-level performance better than \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$10^{-13}/\sqrt{\tau}$\end{document} for 106 atoms. A two-color Mach–Zehnder interferometer can detect a 100-pW probe beam at the optical shot-noise level using conventional photodetectors. This measurement scheme is nondestructive and therefore can be used to increase the operational duty cycle by reusing the trapped atoms for multiple clock cycles. Numerical calculations of the density matrix equations are used to identify realistic operating parameters at which AC Stark shifts are eliminated. By considering fluctuations in these parameters, we estimate that AC Stark shifts can be canceled to a level better than 2×10−14. An overview of the apparatus is presented with estimates of cycle time and power consumption.
引用
收藏
页码:705 / 721
页数:16
相关论文
共 25 条
  • [1] A compact microchip atomic clock based on all-optical interrogation of ultra-cold trapped Rb atoms
    Farkas, D. M.
    Zozulya, A.
    Anderson, D. Z.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2010, 101 (04): : 705 - 721
  • [2] Magnetic excitation of ultra-cold atoms trapped in optical lattice
    Zhao Xing-Dong
    Zhang Ying-Ying
    Liu Wu-Ming
    ACTA PHYSICA SINICA, 2019, 68 (04)
  • [3] All-optical atomic clock based on coherent population trapping in 85Rb
    Merimaa, M
    Lindvall, T
    Tittonen, I
    Ikonen, E
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2003, 20 (02) : 273 - 279
  • [4] A Ca optical frequency standard based on ultra-cold atoms
    Helmcke, J
    Wilpers, G
    Degenhardt, C
    Binnewies, T
    Sterr, U
    Riehle, F
    2002 CONFERENCE ON PRECISION ELECTROMAGNETIC MEASUREMENTS, CONFERENCE DIGEST, 2002, : 154 - 155
  • [5] Optical frequency standards based on ultra-cold strontium atoms
    Ludlow, AD
    Ido, T
    Boyd, MM
    Zelevinsky, T
    Blatt, S
    Notcutt, M
    Foreman, S
    Ye, J
    2005 DIGEST OF THE LEOS SUMMER TOPICAL MEETINGS, 2005, : 77 - 78
  • [6] Realizing Luttinger liquids in trapped ultra-cold atomic Fermi gases using 2D optical lattices
    Kakashvili, P.
    Bhongale, S. G.
    Pu, H.
    Bolech, C. J.
    PHYSICA B-CONDENSED MATTER, 2009, 404 (19) : 3320 - 3323
  • [7] A compact, high-performance all optical atomic clock based on telecom lasers
    Burke, John H.
    Lemke, Nathan D.
    Phelps, Gretchen R.
    Martin, Kyle W.
    SLOW LIGHT, FAST LIGHT, AND OPTO-ATOMIC PRECISION METROLOGY IX, 2016, 9763
  • [8] Ultra-compact all-optical half-adder based on inverse design
    Zhang, Zhigang
    Yang, Hongfeng
    Luo, Mingyu
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2023, 40 (12) : 3032 - 3037
  • [9] Progress Towards the Development of a Portable All-optical Atomic Clock Based on a Two-photon Transition in Warm Atomic Vapor
    Jana, S.
    Sahoo, B. K.
    Sharma, A.
    2022 URSI REGIONAL CONFERENCE ON RADIO SCIENCE, USRI-RCRS, 2022, : 32 - 35
  • [10] Ultra-compact all-optical reversible Feynman gate based on suspended graphene plasmonic waveguides
    Atefeh Safinezhad
    Mohammad Reza Eslami
    Kamran Jafari Jozani
    Mir Hamid Rezaei
    Optical and Quantum Electronics, 2022, 54