On the invariance equation for two-variable weighted nonsymmetric Bajraktarević means

被引:0
|
作者
Zsolt Páles
Amr Zakaria
机构
[1] University of Debrecen,Institute of Mathematics
[2] Ain Shams University,Department of Mathematics, Faculty of Education
来源
Aequationes mathematicae | 2019年 / 93卷
关键词
Bajraktarević mean; Invariant mean; Functional equation; Invariance equation; 39B12; 39.35; 26E60;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of this paper is to investigate the invariance of the arithmetic mean with respect to two weighted Bajraktarević means, i.e., to solve the functional equation fg-1tf(x)+sf(y)tg(x)+sg(y)+hk-1sh(x)+th(y)sk(x)+tk(y)=x+y(x,y∈I),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left( \frac{f}{g}\right) ^{\!\!-1}\!\!\left( \frac{tf(x)+sf(y)}{tg(x)+sg(y)}\right) +\left( \frac{h}{k}\right) ^{\!\!-1}\!\!\left( \frac{sh(x)+th(y)}{sk(x)+tk(y)}\right) =x+y \qquad (x,y\in I), \end{aligned}$$\end{document}where f,g,h,k:I→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f,g,h,k:I\rightarrow \mathbb {R}$$\end{document} are unknown continuous functions such that g, k are nowhere zero on I, the ratio functions f / g, h / k are strictly monotone on I, and t,s∈R+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t,s\in \mathbb {R}_+$$\end{document} are constants different from each other. By the main result of this paper, the solutions of the above invariance equation can be expressed either in terms of hyperbolic functions or in terms of trigonometric functions and an additional weight function. For the necessity part of this result, we will assume that f,g,h,k:I→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f,g,h,k:I\rightarrow \mathbb {R}$$\end{document} are four times continuously differentiable.
引用
收藏
页码:37 / 57
页数:20
相关论文
共 50 条