Intersection Numbers and Rank One Cohomological Field Theories in Genus One

被引:0
|
作者
Alexandre Kabanov
T. Kimura
机构
[1] Max Planck Institut für Mathematik,
[2] Gottfried Claren Str. 26,undefined
[3] 53225 Bonn,undefined
[4] Germany ,undefined
[5] Department of Mathematics,undefined
[6] Michigan State University,undefined
[7] Wells Hall,undefined
[8] East Lansing,undefined
[9] MI 48824-1027,undefined
[10] USA. E-mail: kabanov@math.msu.edu,undefined
[11] Department of Mathematics,undefined
[12] Boston University,undefined
[13] Boston,undefined
[14] MA 02215,undefined
[15] USA. E-mail: kimura@math.bu.edu,undefined
来源
关键词
Differential Equation; Field Theory; Modulus Space; Tensor Product; Intersection Number;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain a simple recursive presentation of the tautological (κ, ψ, and λ) classes on the moduli space of curves in genus $0$ and $1$ in terms of boundary strata (graphs). We derive differential equations for the generating functions for their intersection numbers which allow us to prove a simple relationship between the genus zero and genus one potentials. As an application, we describe the moduli space of normalized, restricted, rank one cohomological field theories in genus one in coordinates which are additive under taking tensor products. Our results simplify and generalize those of Kaufmann, Manin, and Zagier.
引用
收藏
页码:651 / 674
页数:23
相关论文
共 50 条
  • [1] Intersection numbers and rank one cohomological field theories in genus one
    Kabanov, A
    Kimura, T
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 194 (03) : 651 - 674
  • [2] The involution in the rays of space with rank numbers one one and zero
    Schaake, G
    PROCEEDINGS OF THE KONINKLIJKE AKADEMIE VAN WETENSCHAPPEN TE AMSTERDAM, 1926, 29 (6/10): : 1032 - 1040
  • [3] Generalized Airy Functions and the Cohomological Intersection Numbers
    H. Kimura
    Journal of Mathematical Sciences, 2004, 124 (5) : 5250 - 5261
  • [4] Eisenstein series for rank one unitary groups and some cohomological applications
    Grbac, Neven
    Schwermer, Joachim
    ADVANCES IN MATHEMATICS, 2021, 376
  • [5] Shearing in some simple rank one theories
    Malliaris, Maryanthe
    Shelah, Saharon
    ISRAEL JOURNAL OF MATHEMATICS, 2023, 257 (02) : 481 - 518
  • [6] Shearing in some simple rank one theories
    Maryanthe Malliaris
    Saharon Shelah
    Israel Journal of Mathematics, 2023, 257 : 481 - 518
  • [7] On 4d rank-one N=3 superconformal field theories
    Nishinaka, Takahiro
    Tachikawa, Yuji
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (09):
  • [8] Mathematical structures of cohomological field theories
    Jiang, Shuhan
    JOURNAL OF GEOMETRY AND PHYSICS, 2023, 185
  • [9] Deformation theory of cohomological field theories
    Dotsenko, Vladimir
    Shadrin, Sergey
    Vaintrob, Arkady
    Vallette, Bruno
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2024, 2024 (809): : 91 - 157
  • [10] INTRODUCTION TO COHOMOLOGICAL FIELD-THEORIES
    WITTEN, E
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1991, 6 (16): : 2775 - 2792