Identities of the multi-variate independence polynomials from heaps theory

被引:0
|
作者
Kus, Deniz [1 ]
Singh, Kartik [2 ]
Venkatesh, R. [3 ]
机构
[1] Univ Bochum, Fac Math, Univ Str 150, D-44801 Bochum, Germany
[2] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[3] Indian Inst Sci, Dept Math, Bangalore 560012, India
关键词
Independence polynomial of a graph; Cartier-Foata monoids; heaps;
D O I
10.1007/s12044-024-00786-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study and derive identities for the multi-variate independence polynomials from the perspective of heaps theory. Using the inversion formula and the combinatorics of partially commutative algebras we show how the multi-variate version of Godsil type identity as well as the fundamental identity can be obtained from weight preserving bijections. Finally, we obtain a multi-variate identity involving connected bipartite subgraphs similar to the Christoffel-Darboux type identities obtained by Bencs.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Multi-variate polynomials and Newton-Puiseux expansions
    Beringer, F
    Richard-Jung, F
    SYMBOLIC AND NUMERICAL SCIENTIFIC COMPUTATION, 2003, 2630 : 240 - 254
  • [2] Certain Properties of Δh Multi-Variate Hermite Polynomials
    Alazman, Ibtehal
    Alkahtani, Badr Saad T.
    Wani, Shahid Ahmad
    SYMMETRY-BASEL, 2023, 15 (04):
  • [3] Escape from hypercube driven by multi-variate α-stable noises: role of independence
    Dybiec, Bartlomiej
    Szczepaniec, Krzysztof
    EUROPEAN PHYSICAL JOURNAL B, 2015, 88 (07):
  • [4] Escape from hypercube driven by multi-variate α-stable noises: role of independence
    Bartłomiej Dybiec
    Krzysztof Szczepaniec
    The European Physical Journal B, 2015, 88
  • [5] Robust Multi-Variate Temporal Features of Multi-Variate Time Series
    Liu, Sicong
    Poccia, Silvestro Roberto
    Candan, K. Selcuk
    Sapino, Maria Luisa
    Wang, Xiaolan
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2018, 14 (01)
  • [6] Multi-variate run rules
    Tsai, CH
    Wang, SY
    Chang, CT
    Huang, SH
    PROCESS SYSTEMS ENGINEERING 2003, PTS A AND B, 2003, 15 : 1376 - 1381
  • [7] The multi-variate sampling problem
    Dalenius, T.
    SKANDINAVISK AKTUARIETIDSKRIFT, 1953, 36 (1-2): : 92 - 102
  • [8] MULTI-VARIATE PROBIT ANALYSIS
    ASHFORD, JR
    SOWDEN, RR
    BIOMETRICS, 1970, 26 (03) : 535 - &
  • [9] A NOTE ON MULTIPLE INDEPENDENCE UNDER MULTI-VARIATE NORMAL LINEAR-MODELS
    BHAPKAR, VP
    ANNALS OF MATHEMATICAL STATISTICS, 1959, 30 (04): : 1248 - 1251
  • [10] A multi-variate blind source separation algorithmA multi-variate blind source separation algorithm
    Goldhacker, M.
    Keck, P.
    Igel, A.
    Lang, E. W.
    Tome, A. M.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2017, 151 : 91 - 99