Asymptotic behavior of coupled linear systems modeling suspension bridges

被引:0
|
作者
Filippo Dell’Oro
Claudio Giorgi
Vittorino Pata
机构
[1] Università di Brescia,DICATAM
[2] Dipartimento di Matematica “F. Brioschi”,undefined
[3] Politecnico di Milano,undefined
来源
Zeitschrift für angewandte Mathematik und Physik | 2015年 / 66卷
关键词
Primary 35B40; Secondary 47D03; 74H40; 74H55; 74K05; 74K10; String-beam system; Suspension bridge; Coupled wave equations; Contraction semigroup; Stability and exponential stability;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the coupled linear system ∂ttu+∂xxxxu+γ∂tu+k(u-v)+h∂t(u-v)=0ϵ∂ttv-∂xxv-k(u-v)-h∂t(u-v)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{\begin{array}{ll} \partial_{tt} u + \partial_{xxxx}u + \gamma \partial_t u + k(u - v) + h\partial_{t} (u-v) = 0\\\epsilon \partial_{tt} v - \partial_{xx}v - k(u - v) - h\partial_{t} (u - v) = 0\end{array}\right.$$\end{document}describing the vibrations of a string-beam system related to the well-known Lazer–McKenna suspension bridge model. For ε > 0 and k > 0, the decay properties of the solution semigroup are discussed in dependence of the nonnegative parameters γ and h, which are responsible for the damping effects.
引用
收藏
页码:1095 / 1108
页数:13
相关论文
共 50 条