共 50 条
Convergence and Superconvergence of the Local Discontinuous Galerkin Method for Semilinear Second-Order Elliptic Problems on Cartesian Grids
被引:0
|作者:
Mahboub Baccouch
机构:
[1] University of Nebraska at Omaha,Department of Mathematics
来源:
关键词:
Semilinear second-order elliptic boundary-value problems;
Local discontinuous Galerkin method;
A priori error estimation;
Optimal superconvergence;
Supercloseness;
Gauss-Radau projections;
65N12;
65N15;
65N30;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
This paper is concerned with convergence and superconvergence properties of the local discontinuous Galerkin (LDG) method for two-dimensional semilinear second-order elliptic problems of the form -Δu=f(x,y,u)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$-\Delta u=f(x,y,u)$$\end{document} on Cartesian grids. By introducing special Gauss-Radau projections and using duality arguments, we obtain, under some suitable choice of numerical fluxes, the optimal convergence order in L2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^2$$\end{document}-norm of O(hp+1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${O}(h^{p+1})$$\end{document} for the LDG solution and its gradient, when tensor product polynomials of degree at most p and grid size h are used. Moreover, we prove that the LDG solutions are superconvergent with an order p+2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p+ 2$$\end{document} toward particular Gauss-Radau projections of the exact solutions. Finally, we show that the error between the gradient of the LDG solution and the gradient of a special Gauss-Radau projection of the exact solution achieves (p+1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(p+1)$$\end{document}-th order superconvergence. Some numerical experiments are performed to illustrate the theoretical results.
引用
收藏
页码:437 / 476
页数:39
相关论文