Convergence and Superconvergence of the Local Discontinuous Galerkin Method for Semilinear Second-Order Elliptic Problems on Cartesian Grids

被引:0
|
作者
Mahboub Baccouch
机构
[1] University of Nebraska at Omaha,Department of Mathematics
关键词
Semilinear second-order elliptic boundary-value problems; Local discontinuous Galerkin method; A priori error estimation; Optimal superconvergence; Supercloseness; Gauss-Radau projections; 65N12; 65N15; 65N30;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with convergence and superconvergence properties of the local discontinuous Galerkin (LDG) method for two-dimensional semilinear second-order elliptic problems of the form -Δu=f(x,y,u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta u=f(x,y,u)$$\end{document} on Cartesian grids. By introducing special Gauss-Radau projections and using duality arguments, we obtain, under some suitable choice of numerical fluxes, the optimal convergence order in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-norm of O(hp+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${O}(h^{p+1})$$\end{document} for the LDG solution and its gradient, when tensor product polynomials of degree at most p and grid size h are used. Moreover, we prove that the LDG solutions are superconvergent with an order p+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p+ 2$$\end{document} toward particular Gauss-Radau projections of the exact solutions. Finally, we show that the error between the gradient of the LDG solution and the gradient of a special Gauss-Radau projection of the exact solution achieves (p+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p+1)$$\end{document}-th order superconvergence. Some numerical experiments are performed to illustrate the theoretical results.
引用
收藏
页码:437 / 476
页数:39
相关论文
共 50 条