Random transverse single-ion anisotropies in the mixed spin-1 and spin-1/2 Blume–Capel quantum model: Mean-field theory calculations

被引:0
|
作者
G Seto
R A A Yessoufou
A Kpadonou
E Albayrak
机构
[1] Institute of Mathematic and Physical Sciences (IMSP),Department of Physics
[2] University of Abomey-Calavi,Department of Physics
[3] ENS and Laboratory of Physics and Applications (LPA),undefined
[4] Erciyes University,undefined
来源
Pramana | 2022年 / 96卷
关键词
Blume–Capel quantum model; mixed spin-1 and spin-1/2; random transverse crystal field; compensation temperature; hysteresis loops; 61.10.Nz; 61.66.Fn; 75.40.Gb;
D O I
暂无
中图分类号
学科分类号
摘要
We have used mean-field theory based on the Bogoliubov inequality for the free energy to study the effects of random transverse single-ion anisotropies and magnetic field on the mixed spin-1 and spin-1/2 Blume–Capel quantum model with the coordination number z=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z=3$$\end{document}. The interactions of the transverse crystal fields Dx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_x$$\end{document} and Dy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_y$$\end{document} act only on the spin-1 sites and are randomly active with probability p and q and inactive with probability 1−p and 1−q respectively. The thermal behaviours of the order parameters are studied to determine the nature of phase transitions and to calculate the phase diagrams on the (φx=Dx/Jz,kBT/J)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\varphi _x=D_{x}/J z, k_{\mathrm {B}}T/J)$$\end{document}, (p,kBT/J)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p, k_{\mathrm {B}}T/J)$$\end{document} and (q,kBT/J)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(q, k_{\mathrm {B}}T/J)$$\end{document} planes. It is found that the model exhibits only second-order phase transitions. The compensation temperatures are also observed and their lines, Tcomp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\mathrm {comp}}$$\end{document}-lines, are depicted on the (φx,kBT/J)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\varphi _x,k_{\mathrm {B}}T/J)$$\end{document} planes. The hysteresis loops are obtained by introducing an external magnetic field on the system which reveals that the coercive field decreases with temperature and with positive values of φx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi _x$$\end{document} and φy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi _y$$\end{document}. It is also found that remanent magnetisation increases with negative values of φx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi _x$$\end{document} and φy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi _y$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Random transverse single-ion anisotropies in the mixed spin-1 and spin-1/2 Blume-Capel quantum model: Mean-field theory calculations
    Seto, G.
    Yessoufou, R. A. A.
    Kpadonou, A.
    Albayrak, E.
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2022, 96 (01):
  • [2] Random transverse single-ion anisotropy in the spin-1 Blume-Capel quantum model
    Salgado, C. M.
    de Carvalho, N. L.
    de Arruda, P. H. Z.
    Godoy, M.
    de Arruda, A. S.
    Costabile, Emanuel
    Ricardo de Sousa, J.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 522 : 18 - 32
  • [3] A new effective correlation mean-field theory for the ferromagnetic spin-1 Blume Capel model in a transverse crystal field
    Viana, J. Roberto
    Salmon, Octavio D. Rodriguez
    Neto, Minos A.
    Carvalho, Diego C.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2018, 32 (04):
  • [4] Spin-1 Blume-Capel model with longitudinal random crystal and transverse magnetic fields:A mean-field approach
    Erhan Albayrak
    [J]. Chinese Physics B, 2013, 22 (07) : 498 - 502
  • [5] Mean-field solution of the mixed spin-1 and spin-3/2 Ising system with different single-ion anisotropies
    Abubrig, OF
    Horváth, D
    Bobák, A
    Jascur, M
    [J]. PHYSICA A, 2001, 296 (3-4): : 437 - 450
  • [6] Spin-1 Blume-Capel model with longitudinal random crystal and transverse magnetic fields: A mean-field approach
    Albayrak, Erhan
    [J]. CHINESE PHYSICS B, 2013, 22 (07)
  • [7] Migdal-Kadanoff solution of the mixed spin-1 and spin-3/2 Blume-Capel model with different single-ion anisotropies
    Madani, Mohamed
    Gaye, Abou
    El Bouziani, Mohamed
    Alrajhi, Abdelhameed
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 437 : 396 - 404
  • [8] Exact results of a mixed spin-1/2 and spin-1 Ising chain with both longitude and transverse single-ion anisotropies
    Wu, Haina
    Wei, Guozhu
    Yi, Guangyu
    [J]. PHYSICS LETTERS A, 2008, 372 (43) : 6531 - 6535
  • [9] On the random transverse field mixed spin Ising model of spin-1/2 and spin-1
    Weng, XM
    Li, ZY
    [J]. PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1996, 197 (02): : 487 - 494
  • [10] The mixed spin-1/2 and spin-1 Blume-Capel model with random crystal field on the Bethe lattice: Two approaches
    Albayrak, Erhan
    [J]. SOLID STATE COMMUNICATIONS, 2013, 159 : 76 - 78