The authors study the existence of nontrivial solutions to p-Laplacian variational inclusion systems \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\left\{ \begin{gathered}
- \Delta _p u + \left| u \right|^{p - 2} u \in \partial _1 F\left( {u,v} \right), in \mathbb{R}^N , \hfill \\
- \Delta _p v + \left| v \right|^{p - 2} v \in \partial _2 F\left( {u,v} \right), in \mathbb{R}^N , \hfill \\
\end{gathered} \right.$\end{document} where N ≥ 2, 2 ≤ p ≤ N and F: ℝ2 → ℝ is a locally Lipschitz function. Under some growth conditions on F, and by Mountain Pass Theorem and the principle of symmetric criticality, the existence of such solutions is guaranteed.