Absolute continuity and singularity of Palm measures of the Ginibre point process

被引:0
|
作者
Hirofumi Osada
Tomoyuki Shirai
机构
[1] Kyushu University,Faculty of Mathematics
[2] Kyushu University,Institute of Mathematics for Industry
来源
关键词
Ginibre point process; Palm measure; Absolute continuity; Singularity; 60G30; 60G55; 82B21; 60B20; 60K35;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a dichotomy between absolute continuity and singularity of the Ginibre point process G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {G}$$\end{document} and its reduced Palm measures {Gx,x∈Cℓ,ℓ=0,1,2…}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\mathsf {G}_{\mathbf {x}}, \mathbf {x} \in \mathbb {C}^{\ell }, \ell = 0,1,2\ldots \}$$\end{document}, namely, reduced Palm measures Gx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {G}_{\mathbf {x}}$$\end{document} and Gy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {G}_{\mathbf {y}}$$\end{document} for x∈Cℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {x} \in \mathbb {C}^{\ell }$$\end{document} and y∈Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {y} \in \mathbb {C}^{n}$$\end{document} are mutually absolutely continuous if and only if ℓ=n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell = n$$\end{document}; they are singular each other if and only if ℓ≠n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell \not = n$$\end{document}. Furthermore, we give an explicit expression of the Radon–Nikodym density dGx/dGy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\mathsf {G}_{\mathbf {x}}/d \mathsf {G}_{\mathbf {y}}$$\end{document} for x,y∈Cℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {x}, \mathbf {y} \in \mathbb {C}^{\ell }$$\end{document}.
引用
收藏
页码:725 / 770
页数:45
相关论文
共 50 条