Data-driven prognostics with low-fidelity physical information for digital twin: physics-informed neural network

被引:0
|
作者
Seokgoo Kim
Joo-Ho Choi
Nam Ho Kim
机构
[1] University of Florida,Department of Mechanical and Aerospace Engineering
[2] Korea Aerospace University,Department of Aerospace and Mechanical Engineering
关键词
Physics-informed neural network; Prognostics; Uncertainty quantification; Remaining useful life;
D O I
暂无
中图分类号
学科分类号
摘要
In the absence of a high-fidelity physics-based prognostics model, data-driven prognostics methods are widely adopted. In practice, however, data-driven approaches often suffer from insufficient training data, which causes large training uncertainty that hinders the Digital twin (DT)-based decision-making. In such a case, the integration of low-fidelity physics with a data-driven method is highly demanded. This paper introduces physics-informed neural network (PINN)-based prognostics that can utilize low-fidelity physics information, such as monotonicity or the sign of curvature. Low-fidelity physics information is included as a constraint during the optimization process to reduce the training uncertainty in the neural network model by preventing unrealistic predictions. The proposed method is applied to two case studies to demonstrate the effect of reducing the prediction uncertainty and the robustness to the variability in test data. The two case studies show that PINN-based prognostics can successfully reduce the prediction uncertainty and yield more robust prognostics performance than the ordinary neural network.
引用
收藏
相关论文
共 50 条
  • [1] Data-driven prognostics with low-fidelity physical information for digital twin: physics-informed neural network
    Kim, Seokgoo
    Choi, Joo-Ho
    Kim, Nam Ho
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2022, 65 (09)
  • [2] Data-driven physics-informed neural networks: A digital twin perspective
    Yang, Sunwoong
    Kim, Hojin
    Hong, Yoonpyo
    Yee, Kwanjung
    Maulik, Romit
    Kang, Namwoo
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 428
  • [4] Development of a data-driven simulation framework using physics-informed neural network
    Chae, Young Ho
    Kim, Hyeonmin
    Bang, Jungjin
    Seong, Poong Hyun
    ANNALS OF NUCLEAR ENERGY, 2023, 189
  • [5] A Regularized Physics-Informed Neural Network to Support Data-Driven Nonlinear Constrained Optimization
    Perez-Rosero, Diego Armando
    Alvarez-Meza, Andres Marino
    Castellanos-Dominguez, Cesar German
    COMPUTERS, 2024, 13 (07)
  • [6] Data-driven modeling of Landau damping by physics-informed neural networks
    Qin, Yilan
    Ma, Jiayu
    Jiang, Mingle
    Dong, Chuanfei
    Fu, Haiyang
    Wang, Liang
    Cheng, Wenjie
    Jin, Yaqiu
    PHYSICAL REVIEW RESEARCH, 2023, 5 (03):
  • [7] Predicting high-fidelity multiphysics data from low-fidelity fluid flow and transport solvers using physics-informed neural networks
    Aliakbari, Maryam
    Mahmoudi, Mostafa
    Vadasz, Peter
    Arzani, Amirhossein
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2022, 96
  • [8] Physics-informed neural networks for data-driven simulation: Advantages, limitations, and opportunities
    de la Mata, Felix Fernandez
    Gijon, Alfonso
    Molina-Solana, Miguel
    Gomez-Romero, Juan
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2023, 610
  • [9] Data-driven machine learning approach based on physics-informed neural network for population balance model
    Ishtiaq Ali
    Advances in Continuous and Discrete Models, 2025 (1):
  • [10] A physics-informed data-driven approach for consolidation analysis
    Zhang, Pin
    Yin, Zhen-Yu
    Sheil, Brian
    GEOTECHNIQUE, 2022, 74 (07): : 620 - 631