A Functional Comparison of Animal Anterior Cruciate Ligament Models to the Human Anterior Cruciate Ligament

被引:0
|
作者
John W. Xerogeanes
Ross J. Fox
Yoshi Takeda
Hyoung-Soo Kim
Yasuyuki Ishibashi
Gregory J. Carlin
Savio L-Y. Woo
机构
[1] University of Pittsburgh Medical Center,Musculoskeletal Research Center, Department of Orthopaedic Surgery
来源
关键词
Knee; Kinematics; Goat; Pig; Sheep; Universal force-moment sensor; Ligament: anterior cruciate;
D O I
暂无
中图分类号
学科分类号
摘要
Many investigators have used animal models to clarify the role of the human anterior cruciate ligament (ACL). Because none of these models are anatomically and biomechanically identical to the human ACL, there exists a need for an objective comparison of these models. To do this, we used a universal force-moment sensor to measure and compare the in situ forces, including magnitude and direction, of the ACL and the anteromedial (AM) and posterolateral (PL) bundles of human, pig, goat, and sheep knees. An Instron was used to apply 50 and 100 N anterior tibial loads at 90° of knee flexion, while a universal force-moment sensor was used to measure the forces applied by the ACL to the tibia, the in situ force of the ACL. We found significant differences between the magnitude of force experienced by the goat and sheep ACL and AM and PL bundles when compared with the human ACL and AM and PL bundles. Also, the direction of the in situ force in the ACL and AM bundles of the goat and sheep were different from the human. The pig knee differed from the human only in the magnitude and direction of the in situ force in the PL bundle in response under anterior tibial loading. A tally of the significant differences between the animal models and the human knees indicates that goat and sheep knees may have limitations in modeling the human ACL, while the pig knee may be the preferred model for experimental studies.
引用
收藏
页码:345 / 352
页数:7
相关论文
共 50 条
  • [1] A functional comparison of animal anterior cruciate ligament models to the human anterior cruciate ligament
    Xerogeanes, JW
    Fox, RJ
    Takeda, Y
    Kim, HS
    Ishibashi, Y
    Carlin, GJ
    Woo, SLY
    [J]. ANNALS OF BIOMEDICAL ENGINEERING, 1998, 26 (03) : 345 - 352
  • [2] Large Animal Models for Anterior Cruciate Ligament Research
    Bascunan, Ana Luisa
    Biedrzycki, Adam
    Banks, Scott A.
    Lewis, Daniel D.
    Kim, Stanley E.
    [J]. FRONTIERS IN VETERINARY SCIENCE, 2019, 6
  • [3] Anterior cruciate ligament reconstruction using an anterior cruciate ligament stump
    Chen, Tie-Zhu
    Wang, Yi-Sheng
    Li, Xiao-Sheng
    [J]. VIDEOSURGERY AND OTHER MINIINVASIVE TECHNIQUES, 2019, 14 (03) : 461 - 467
  • [4] Anterior cruciate ligament
    Duri, ZAA
    Aichroth, PM
    [J]. BRITISH JOURNAL OF HOSPITAL MEDICINE, 1997, 58 (04): : 134 - 137
  • [5] THE ANTERIOR CRUCIATE LIGAMENT
    BESSETTE, GC
    HUNTER, RE
    [J]. ORTHOPEDICS, 1990, 13 (05) : 551 - 562
  • [6] Anterior Cruciate Ligament
    Kohn, D.
    [J]. ARTHROSKOPIE, 2005, 18 (01) : 7 - 7
  • [7] THE ANTERIOR CRUCIATE LIGAMENT
    TRICKEY, EL
    [J]. JOURNAL OF BONE AND JOINT SURGERY-BRITISH VOLUME, 1981, 63 (03): : 466 - 466
  • [8] Small laboratory animal models of anterior cruciate ligament reconstruction
    Cardona-Ramirez, Sebastian
    Cook, James L.
    Stoker, Aaron M.
    Ma, Richard
    [J]. JOURNAL OF ORTHOPAEDIC RESEARCH, 2022, 40 (09) : 1967 - 1980
  • [9] Anterior Cruciate Ligament Reconstruction With Preservation of Femoral Anterior Cruciate Ligament Stump
    Nag, Hira Lal
    Gupta, Himanshu
    [J]. ARTHROSCOPY TECHNIQUES, 2014, 3 (05): : E575 - E577
  • [10] MECHANORECEPTORS IN THE HUMAN ANTERIOR CRUCIATE LIGAMENT
    ZIMNY, ML
    SCHUTTE, M
    DABEZIES, E
    [J]. ANATOMICAL RECORD, 1985, 211 (03): : A222 - A222