On the grad-div stabilization for the steady Oseen and Navier-Stokes equations

被引:1
|
作者
Naveed Ahmed
机构
[1] Leibniz Institute in Forschungsverbund Berlin e. V. (WIAS),Weierstrass Institute for Applied Analysis and Stochastics
来源
Calcolo | 2017年 / 54卷
关键词
Incompressible Navier-Stokes equations; Mixed finite elements; Grad-div stabilization; Error estimates; Stabilization parameter; 35Q30; 76M10; 65L60;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with the choice of stabilization parameter for the grad-div stabilization applied to the generalized Oseen equations. In particular, inf-sup stable conforming pairs of finite element are used to derive the stabilization parameter on the basis of minimizing the H1(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1({\varOmega })$$\end{document} error of the velocity. For the proposed choice of the parameter, the H1(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1({\varOmega })$$\end{document} error of the velocity is derived that shows a direct dependence on the viscosity coefficient. Differences and common features with the Stokes equations are discussed. Numerical studies are presented which confirm the theoretical results. Moreover, for the Navier-Stokes equations, numerical simulations are performed on a two-dimensional flow past a circular cylinder. It turns out that, for the MINI element, the best results are achieved without grad-div stabilization.
引用
收藏
页码:471 / 501
页数:30
相关论文
共 50 条
  • [1] On the grad-div stabilization for the steady Oseen and Navier-Stokes equations
    Ahmed, Naveed
    [J]. CALCOLO, 2017, 54 (01) : 471 - 501
  • [2] Grad-div stabilization and subgrid pressure models for the incompressible Navier-Stokes equations
    Olshanskii, Maxim
    Lube, Gert
    Heister, Timo
    Loewe, Johannes
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (49-52) : 3975 - 3988
  • [3] The effect of a sparse grad-div stabilization on control of stationary Navier-Stokes equations
    Cibik, A.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 437 (01) : 613 - 628
  • [4] On reducing the splitting error in Yosida methods for the Navier-Stokes equations with grad-div stabilization
    Rebholz, Leo G.
    Xiao, Mengying
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 294 : 259 - 277
  • [5] Modular Grad-Div Stabilization and Defect-Deferred Correction Method for the Navier-Stokes Equations
    Cai, Huiping
    Xue, Feng
    Xiao, Haiqiang
    He, Yang
    [J]. IAENG International Journal of Applied Mathematics, 2021, 51 (03): : 1 - 8
  • [6] A Parallel Finite Element Discretization Algorithm Based on Grad-Div Stabilization for the Navier-Stokes Equations
    Shang, Yueqiang
    Zhu, Jiali
    Zheng, Bo
    [J]. JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2024, 26 (03)
  • [7] On the parameter choice in grad-div stabilization for the Stokes equations
    Jenkins, Eleanor W.
    John, Volker
    Linke, Alexander
    Rebholz, Leo G.
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2014, 40 (02) : 491 - 516
  • [8] Numerical Analysis of a BDF2 Modular Grad-Div Stabilization Method for the Navier-Stokes Equations
    Rong, Y.
    Fiordilino, J. A.
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2020, 82 (03)
  • [9] On the parameter choice in grad-div stabilization for the Stokes equations
    Eleanor W. Jenkins
    Volker John
    Alexander Linke
    Leo G. Rebholz
    [J]. Advances in Computational Mathematics, 2014, 40 : 491 - 516
  • [10] Numerical analysis of projection methods for the time-dependent Navier-Stokes equations with modular grad-div stabilization
    Han, Wei-Wei
    Jiang, Yao-Lin
    Miao, Zhen
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 141 : 145 - 158