Invariant curves for endomorphisms of P1×P1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {P}}}^1\times {{\mathbb {P}}}^1$$\end{document}

被引:0
|
作者
Fedor Pakovich
机构
[1] Ben-Gurion University of the Negev,Department of Mathematics
关键词
D O I
10.1007/s00208-021-02304-5
中图分类号
学科分类号
摘要
Let A1,A2∈C(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_1, A_2\in {{\mathbb {C}}}(z)$$\end{document} be rational functions of degree at least two that are neither Lattès maps nor conjugate to z±n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z^{\pm n}$$\end{document} or ±Tn.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pm T_n.$$\end{document} We describe invariant, periodic, and preperiodic algebraic curves for endomorphisms of (P1(C))2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({{\mathbb {P}}}^1({{\mathbb {C}}}))^2$$\end{document} of the form (z1,z2)→(A1(z1),A2(z2)).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(z_1,z_2)\rightarrow (A_1(z_1),A_2(z_2)).$$\end{document} In particular, we show that if A∈C(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\in {{\mathbb {C}}}(z)$$\end{document} is not a “generalized Lattès map”, then any (A, A)-invariant curve has genus zero and can be parametrized by rational functions commuting with A. As an application, for A defined over a subfield K of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {{\mathbb {C}}}$$\end{document} we give a criterion for a point of (P1(K))2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({{\mathbb {P}}}^1(K))^2$$\end{document} to have a Zariski dense (A, A)-orbit in terms of canonical heights, and deduce from this criterion a version of a conjecture of Zhang on the existence of rational points with Zariski dense forward orbits. We also prove a result about functional decompositions of iterates of rational functions, which implies in particular that there exist at most finitely many (A1,A2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(A_1, A_2)$$\end{document}-invariant curves of any given bi-degree (d1,d2).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(d_1,d_2).$$\end{document}
引用
收藏
页码:259 / 307
页数:48
相关论文
共 50 条