The condition number of real Vandermonde, Krylov and positive definite Hankel matrices

被引:0
|
作者
Bernhard Beckermann
机构
[1] Laboratoire d'Analyse Num\a'erique et d'Optimisation,
[2] UFR IEEA – M3,undefined
[3] UST Lille,undefined
[4] F-59655 Villeneuve d'Ascq CEDEX,undefined
[5] France; e-mail: bbecker@ano.univ-lille1.fr ,undefined
来源
Numerische Mathematik | 2000年 / 85卷
关键词
Mathematics Subject Classification (1991):15A12, 65F35;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the Euclidean condition number of any positive definite Hankel matrix of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $n\geq 3$\end{document} may be bounded from below by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\gamma^{n-1}/(16n)$\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\gamma=\exp(4 \cdot{\it Catalan}/\pi) \approx 3.210$\end{document}, and that this bound may be improved at most by a factor \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $8 \gamma n$\end{document}. Similar estimates are given for the class of real Vandermonde matrices, the class of row-scaled real Vandermonde matrices, and the class of Krylov matrices with Hermitian argument. Improved bounds are derived for the case where the abscissae or eigenvalues are included in a given real interval. Our findings confirm that all such matrices – including for instance the famous Hilbert matrix – are ill-conditioned already for “moderate” order. As application, we describe implications of our results for the numerical condition of various tasks in Numerical Analysis such as polynomial and rational i nterpolation at real nodes, determination of real roots of polynomials, computation of coefficients of orthogonal polynomials, or the iterative solution of linear systems of equations.
引用
收藏
页码:553 / 577
页数:24
相关论文
共 50 条