Continuum modeling of dislocation plasticity: Theory, numerical implementation, and validation by discrete dislocation simulations

被引:0
|
作者
Stefan Sandfeld
Thomas Hochrainer
Michael Zaiser
Peter Gumbsch
机构
[1] Karlsruher Institut für Technologie,Department of Scientific Computing
[2] IZBS—Institut für Zuverlässigkeit von Bauteilen und Systemen,Center for Materials Science and Engineering
[3] Florida State University,Karlsruher Institut für Technologie
[4] The University of Edinburgh,undefined
[5] IZBS—Institut für Zuverlässigkeit von Bauteilen und Systemen,undefined
[6] Fraunhofer IWM,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Miniaturization of components and devices calls for an increased effort on physically motivated continuum theories, which can predict size-dependent plasticity by accounting for length scales associated with the dislocation microstructure. An important recent development has been the formulation of a Continuum Dislocation Dynamics theory (CDD) that provides a kinematically consistent continuum description of the dynamics of curved dislocation systems [T. Hochrainer, et al., Philos. Mag.87, 1261 (2007)]. In this work, we present a brief overview of dislocation-based continuum plasticity models. We illustrate the implementation of CDD by a numerical example, bending of a thin film, and compare with results obtained by three-dimensional discrete dislocation dynamics (DDD) simulation.
引用
收藏
页码:623 / 632
页数:9
相关论文
共 50 条
  • [1] Continuum modeling of dislocation plasticity: Theory, numerical implementation, and validation by discrete dislocation simulations
    Sandfeld, Stefan
    Hochrainer, Thomas
    Zaiser, Michael
    Gumbsch, Peter
    [J]. JOURNAL OF MATERIALS RESEARCH, 2011, 26 (05) : 623 - 632
  • [2] \ CONTINUUM MODELING OF DISLOCATION PLASTICITY: THEORY, NUMERICAL IMPLEMENTATION AND COMPARISON TO DISCRETE DISLOCATION SIMULATIONS
    Gumbsch, P.
    Sandfeld, S.
    Senger, J.
    Weygand, D.
    Hochrainer, T.
    [J]. ADVANCES IN HETEROGENEOUS MATERIAL MECHANICS 2011, 2011, : 7 - +
  • [3] On the implementation of dislocation reactions in continuum dislocation dynamics modeling of mesoscale plasticity
    Vivekanandan, Vignesh
    Lin, Peng
    Winther, Grethe
    El-Azab, Anter
    [J]. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2021, 149
  • [4] Modeling microbending of thin films through discrete dislocation dynamics, continuum dislocation theory, and gradient plasticity
    Katerina E. Aifantis
    Daniel Weygand
    Christian Motz
    Nikolaos Nikitas
    Michael Zaiser
    [J]. Journal of Materials Research, 2012, 27 : 612 - 618
  • [5] Modeling microbending of thin films through discrete dislocation dynamics, continuum dislocation theory, and gradient plasticity
    Aifantis, Katerina E.
    Weygand, Daniel
    Motz, Christian
    Nikitas, Nikolaos
    Zaiser, Michael
    [J]. JOURNAL OF MATERIALS RESEARCH, 2012, 27 (03) : 612 - 618
  • [6] Multi-scale plasticity modeling: Coupled discrete dislocation and continuum crystal plasticity
    Wallin, M.
    Curtin, W. A.
    Ristinmaa, M.
    Needleman, A.
    [J]. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2008, 56 (11) : 3167 - 3180
  • [7] Multi-scale plasticity modeling: Coupled discrete dislocation and continuum crystal plasticity
    Curtin, W. A.
    Wallin, M.
    Ristinmaa, M.
    Needleman, A.
    [J]. ADVANCES IN HETEROGENEOUS MATERIAL MECHANICS 2008, 2008, : 320 - 320
  • [8] The three-dimensional elastodynamic solution for dislocation plasticity and its implementation in discrete dislocation dynamics simulations
    Yang, Junjie
    Rida, Ali
    Gu, Yejun
    Magagnosc, Daniel
    Zaki, Tamer A.
    El-Awady, Jaafar A.
    [J]. ACTA MATERIALIA, 2023, 253
  • [9] DISLOCATION - A NEW CONCEPT IN CONTINUUM THEORY OF PLASTICITY
    KRONER, E
    [J]. JOURNAL OF MATHEMATICS AND PHYSICS, 1963, 42 (01): : 27 - &
  • [10] A comparison of nonlocal continuum and discrete dislocation plasticity predictions
    Bittencourt, E
    Needleman, A
    Gurtin, ME
    Van der Giessen, E
    [J]. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2003, 51 (02) : 281 - 310