Periodic solutions for p-Laplacian Rayleigh equations with singularities

被引:0
|
作者
Shipin Lu
Tao Zhong
Lijuan Chen
机构
[1] Nanjing University of Information Science & Technology,College of Mathematics & Statistics
来源
关键词
Rayleigh equation; topological degree; singularity; periodic solution;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the problem of existence of periodic solutions is studied for p-Laplacian Rayleigh equations with a singularity at x=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x=0$\end{document}. By using the topological degree theory, some new results are obtained.
引用
收藏
相关论文
共 50 条
  • [1] Periodic solutions for p-Laplacian Rayleigh equations with singularities
    Lu, Shipin
    Zhong, Tao
    Chen, Lijuan
    [J]. BOUNDARY VALUE PROBLEMS, 2016, : 1 - 12
  • [2] Periodic solutions of p-Laplacian equations with singularities
    Shipin Lu
    Tao Zhong
    Yajing Gao
    [J]. Advances in Difference Equations, 2016
  • [3] Periodic solutions of p-Laplacian equations with singularities
    Lu, Shipin
    Zhong, Tao
    Gao, Yajing
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2016,
  • [4] Periodic solutions for p-Laplacian Rayleigh equations
    Cheung, Wing-Sum
    Ren, Jingli
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 65 (10) : 2003 - 2012
  • [5] Periodic solutions for p-Laplacian Rayleigh equations with a deviating argument
    Peng, Shiguo
    Zhu, Siming
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (01) : 138 - 146
  • [6] ON THE EXISTENCE OF PERIODIC SOLUTIONS TO A P-LAPLACIAN RAYLEIGH EQUATION
    Du, Bo
    Lu, Shiping
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2009, 40 (04): : 253 - 266
  • [7] Periodic solutions for a Rayleigh system of p-Laplacian type
    Peng, Shiguo
    Zhu, Siming
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (01) : 274 - 279
  • [8] Existence of periodic solutions for p-Laplacian neutral Rayleigh equation
    Zhi Min He
    Jian Hua Shen
    [J]. Advances in Difference Equations, 2014
  • [9] Existence of periodic solutions for p-Laplacian neutral Rayleigh equation
    He, Zhi Min
    Shen, Jian Hua
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2014,
  • [10] Existence of periodic solutions for a class of p-Laplacian equations
    Xiaojun Chang
    Yu Qiao
    [J]. Boundary Value Problems, 2013