Estimation of tissue contractility from cardiac cine-MRI using a biomechanical heart model

被引:0
|
作者
R. Chabiniok
P. Moireau
P.-F. Lesault
A. Rahmouni
J.-F. Deux
D. Chapelle
机构
[1] INRIA,
[2] AP-HP Hôpital Henri Mondor,undefined
[3] Université Paris-Est Créteil,undefined
关键词
Patient-specific cardiac modeling; State and parameter estimation; Data assimilation; Filtering; Clinical data;
D O I
暂无
中图分类号
学科分类号
摘要
The objective of this paper is to propose and assess an estimation procedure—based on data assimilation principles—well suited to obtain some regional values of key biophysical parameters in a beating heart model, using actual Cine-MR images. The motivation is twofold: (1) to provide an automatic tool for personalizing the characteristics of a cardiac model in order to achieve predictivity in patient-specific modeling and (2) to obtain some useful information for diagnosis purposes in the estimated quantities themselves. In order to assess the global methodology, we specifically devised an animal experiment in which a controlled infarct was produced and data acquired before and after infarction, with an estimation of regional tissue contractility—a key parameter directly affected by the pathology—performed for every measured stage. After performing a preliminary assessment of our proposed methodology using synthetic data, we then demonstrate a full-scale application by first estimating contractility values associated with 6 regions based on the AHA subdivision, before running a more detailed estimation using the actual AHA segments. The estimation results are assessed by comparison with the medical knowledge of the specific infarct, and with late enhancement MR images. We discuss their accuracy at the various subdivision levels, in the light of the inherent modeling limitations and of the intrinsic information contents featured in the data.
引用
收藏
页码:609 / 630
页数:21
相关论文
共 50 条
  • [1] Estimation of tissue contractility from cardiac cine-MRI using a biomechanical heart model
    Chabiniok, R.
    Moireau, P.
    Lesault, P. -F.
    Rahmouni, A.
    Deux, J. -F.
    Chapelle, D.
    BIOMECHANICS AND MODELING IN MECHANOBIOLOGY, 2012, 11 (05) : 609 - 630
  • [2] Trials on Tissue Contractility Estimation from Cardiac Cine MRI Using a Biomechanical Heart Model
    Chabiniok, R.
    Moireau, P.
    Lesault, P. -F.
    Rahmouni, A.
    Deux, J. -F.
    Chapelle, D.
    FUNCTIONAL IMAGING AND MODELING OF THE HEART, 2011, 6666 : 304 - 312
  • [3] Normal cardiac diameters in cine-MRI of the heart
    Hergan, K
    Schuster, A
    Mair, M
    Burger, R
    Töpker, M
    ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2004, 176 (11): : 1599 - 1606
  • [4] Cardiac Motion Recovery and Boundary Conditions Estimation by Coupling an Electromechanical Model and Cine-MRI Data
    Billet, Florence
    Sermesant, Maxime
    Delingette, Herve
    Ayache, Nicholas
    FUNCTIONAL IMAGING AND MODELING OF THE HEART, PROCEEDINGS, 2009, 5528 : 376 - 385
  • [5] Patient Heart Motion Assessed With Cine-MRI
    Klawikowski, S.
    Mostafaei, F.
    Li, X. Allen
    MEDICAL PHYSICS, 2018, 45 (06) : E179 - E180
  • [6] CARDIAC CINE-MRI/CT REGISTRATION FOR INTERVENTIONS PLANNING
    Courtial, Nicolas
    Simon, Antoine
    Donal, Erwan
    Lederlin, Mathieu
    Garreau, Mireille
    2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019), 2019, : 776 - 779
  • [7] From cine-MRI to computational models of blood flow within the heart
    Renzi, Francesca
    Bennati, Lorenzo
    Fedele, Marco
    Giambruno, Vincenzo
    Quarteroni, Alfio
    Puppini, Giovanni
    Luciani, Giovanni Battista
    Vergara, Christian
    VASCULAR PHARMACOLOGY, 2024, 155
  • [8] A digital cardiac disease biomarker from a generative progressive cardiac cine-MRI representation
    Santiago Gómez
    David Romo-Bucheli
    Fabio Martínez
    Biomedical Engineering Letters, 2022, 12 : 75 - 84
  • [9] A digital cardiac disease biomarker from a generative progressive cardiac cine-MRI representation
    Gomez, Santiago
    Romo-Bucheli, David
    Martinez, Fabio
    BIOMEDICAL ENGINEERING LETTERS, 2022, 12 (01) : 75 - 84
  • [10] GSMorph: Gradient Surgery for Cine-MRI Cardiac Deformable Registration
    Dou, Haoran
    Bi, Ning
    Han, Luyi
    Huang, Yuhao
    Mann, Ritse
    Yang, Xin
    Ni, Dong
    Ravikumar, Nishant
    Frangi, Alejandro F.
    Huang, Yunzhi
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT X, 2023, 14229 : 613 - 622