Water-yield relations and water-use efficiency of winter wheat in the North China Plain

被引:1
|
作者
H. Zhang
X. Wang
M. You
C. Liu
机构
[1] Institute of Agricultural Modernization,
[2] Chinese Academy of Sciences,undefined
[3] Shijiazhuang,undefined
[4] China,undefined
来源
Irrigation Science | 1999年 / 19卷
关键词
Water Stress; Winter Wheat; North China Plain; Rainfed Condition; Kernel Number;
D O I
暂无
中图分类号
学科分类号
摘要
Limited precipitation restricts yield of winter wheat (Triticum aestivum L.) grown in the North China Plain. Water stress effects on yield can be avoided or minimized by application of irrigation. We examined the multiseasonal irrigation experiments in four locations of the piedmont and lowland in the region, and developed crop water-stress sensitivity index, relationship between seasonal evapotranspiration (ET) and yield, and crop water production functions. By relating relative yield to relative ET deficit, we found that the crop was more sensitive to water stress from stem elongation to heading and from heading to milking. For limited irrigation, irrigation is recommended during the stages sensitive to water stress. Grain yield was 258–322 g m−2 in the piedmont and 260–280 g m−2 in the lowland under rainfed conditions. The corresponding seasonal ET was 242–264 mm in the piedmont and 247–281 mm in the lowland. Irrigation significantly increased seasonal ET and therefore grain yield as a result of increased kernel numbers per m−2 and kernels per ear. On average, one irrigation increased grain yield by 21–43% and two to four irrigations by 60–100%. Grain yield was linearly related to seasonal ET with a slope of 1.15 kg m−3 in the lowland and 1.73 kg m−3 in the piedmont. Water-use efficiency was 0.98–1.22 kg m−3 for rainfed wheat and 1.20–1.40 kg m−3 for the wheat irrigated 2–4 times. Grain yield response to the amount of irrigation (IRR) was developed using a quadratic function and used to analyze different irrigation scenarios. To achieve the maximum grain yield, IRR was 240 mm in the piedmont and 290 mm in the lowland. When the maximum net profit was achieved, IRR was 195 mm and 250 mm in the piedmont and lowland, respectively. The yield response curve to IRR showed a plateau over a large range of IRR, indicating a great potential in saving IRR while maintaining reasonable high levels of grain yield.
引用
收藏
页码:37 / 45
页数:8
相关论文
共 50 条
  • [1] Water-yield relations and water-use efficiency of winter wheat in the North China Plain
    Zhang, H
    Wang, X
    You, M
    Liu, C
    [J]. IRRIGATION SCIENCE, 1999, 19 (01) : 37 - 45
  • [2] Responses of grain yield and water use efficiency of winter wheat to tillage in the North China Plain
    Kan, Zheng-Rong
    Liu, Qiu-Yue
    He, Cong
    Jing, Zhen-Huan
    Virk, Ahmad Latif
    Qi, Jian-Ying
    Zhao, Xin
    Zhang, Hai-Lin
    [J]. FIELD CROPS RESEARCH, 2020, 249
  • [3] Canopy water use efficiency of winter wheat in the North China Plain
    Zhao, Feng-Hua
    Yu, Gui-Rui
    Li, Sheng-Gong
    Ren, Chuan-You
    Sun, Xiao-Min
    Mi, Na
    Li, Jun
    Ouyang, Zhu
    [J]. AGRICULTURAL WATER MANAGEMENT, 2007, 93 (03) : 99 - 108
  • [4] Response of winter-wheat grain yield and water-use efficiency to irrigation with activated water on Guanzhong Plain in China
    Zhao, Guoqing
    Mu, Yan
    Wang, Yanhui
    Wang, Li
    [J]. IRRIGATION SCIENCE, 2021, 39 (02) : 263 - 276
  • [5] Response of winter-wheat grain yield and water-use efficiency to irrigation with activated water on Guanzhong Plain in China
    Guoqing Zhao
    Yan Mu
    Yanhui Wang
    Li Wang
    [J]. Irrigation Science, 2021, 39 : 263 - 276
  • [6] Yield and water use response of winter wheat to winter irrigation in the North China Plain
    Shao, L. W.
    Zhang, X. Y.
    Sun, H. Y.
    Chen, S. Y.
    Wang, Y. M.
    [J]. JOURNAL OF SOIL AND WATER CONSERVATION, 2011, 66 (02) : 104 - 113
  • [7] Improving water use efficiency and grain yield of winter wheat by optimizing irrigations in the North China Plain
    Xu, Xuexin
    Zhang, Meng
    Li, Jinpeng
    Liu, Zuqiang
    Zhao, Zhigan
    Zhang, Yinghua
    Zhou, Shunli
    Wang, Zhimin
    [J]. FIELD CROPS RESEARCH, 2018, 221 : 219 - 227
  • [8] Response of winter wheat grain yield and water use efficiency to deficit irrigation in the North China Plain
    Han, Huifang
    Ren, Yujie
    Gao, Chao
    Yan, Zhenxing
    Li, Quanqi
    [J]. EMIRATES JOURNAL OF FOOD AND AGRICULTURE, 2017, 29 (12): : 971 - 977
  • [9] Grain yield and water use of winter wheat as affected by water and sulfur supply in the North China Plain
    XIE Ying-xin
    ZHANG Hui
    ZHU Yun-ji
    ZHAO Li
    YANG Jia-heng
    CHA Fei-na
    LIU Cao
    WANG Chen-yang
    GUO Tian-cai
    [J]. Journal of Integrative Agriculture, 2017, 16 (03) : 614 - 625
  • [10] Water-use efficiency of aerobic rice in North China plain
    Yang, XG
    Bouman, BAM
    Wang, HQ
    Wang, ZM
    Zhao, JF
    Chen, B
    [J]. JOURNAL OF EXPERIMENTAL BOTANY, 2003, 54 : 14 - 14