Efficient Color Texture Classification Using Color Monogenic Wavelet Transform

被引:0
|
作者
Shan Gai
机构
[1] Nanchang Hangkong University,School of Information Engineering
来源
Neural Processing Letters | 2017年 / 46卷
关键词
Texture analysis; Analytic signal; Monogenic signal; Monogenic wavelet; Color monogenic wavelet;
D O I
暂无
中图分类号
学科分类号
摘要
Color textures are among the most important visual attributes in image analysis. From the practical point view of color texture image analysis, this paper proposes an effective multi-scale color texture classification algorithm that is rotation and scale invariant using non-marginal color monogenic wavelet transform. The proposed algorithm exploits the color monogenic wavelet transform to obtain multi-scale representation of training samples for each texture class. The coefficients of color monogenic wavelet transform represent a magnitude and three phases: two phases encode local color information while the third contains geometric information of color texture image. The multi-scale feature vector is composed of mean value, standard deviation, energy and entropy at different scales of each of the directional sub-bands. The experimental results of average correct classification rates are 98.67, 99.08 and 99.89%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$99.89\%$$\end{document} which are obtained from different color texture databases demonstrate its superior performance and robustness of the proposed classifier. The proposed color texture feature vector is also shown to be effective for color texture classification.
引用
收藏
页码:609 / 626
页数:17
相关论文
共 50 条
  • [1] Efficient Color Texture Classification Using Color Monogenic Wavelet Transform
    Gai, Shan
    [J]. NEURAL PROCESSING LETTERS, 2017, 46 (02) : 609 - 626
  • [2] Color texture classification using wavelet transform
    Arivazhagen, S
    Ganesan, L
    Angayarkanni, V
    [J]. ICCIMA 2005: SIXTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND MULTIMEDIA APPLICATIONS, PROCEEDINGS, 2005, : 315 - 320
  • [3] COLOR TEXTURE CLASSIFICATION USING WAVELET TRANSFORM AND NEURAL NETWORK ENSEMBLES
    Sengur, Abdulkadir
    [J]. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2009, 34 (2B) : 491 - 502
  • [4] Color monogenic wavelet transform for multichannel image denoising
    Shan Gai
    Yong Zhang
    Cihui Yang
    Lei Wang
    Jiehua Zhou
    [J]. Multidimensional Systems and Signal Processing, 2017, 28 : 1463 - 1480
  • [5] Color monogenic wavelet transform for multichannel image denoising
    Gai, Shan
    Zhang, Yong
    Yang, Cihui
    Wang, Lei
    Zhou, Jiehua
    [J]. MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2017, 28 (04) : 1463 - 1480
  • [6] Image retrieval using color, texture and wavelet transform moments
    Choras, R. S.
    [J]. PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE ON ADVANCES IN PATTERN RECOGNITION, 2007, : 256 - 262
  • [7] Wavelet transform and adaptive neuro-fuzzy inference system for color texture classification
    Sengur, Abdulkadir
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2008, 34 (03) : 2120 - 2128
  • [8] Texture classification using wavelet transform
    DeBrunner, V
    Kadiyala, M
    [J]. 42ND MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, PROCEEDINGS, VOLS 1 AND 2, 1999, : 1053 - 1056
  • [9] Texture classification using wavelet transform
    Arivazhagan, S
    Ganesan, L
    [J]. PATTERN RECOGNITION LETTERS, 2003, 24 (9-10) : 1513 - 1521
  • [10] Color texture segmentation using color transform and feature distributions
    Weng, Shiuh-Ku
    Kuo, Chung-Ming
    Kang, Wei-Cung
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2007, E90D (04) : 787 - 790