A quasi-isochronous vibroimpact system is considered, i.e. a linear system with a rigid one-sided barrier, which is slightly offset from the system's static equilibrium position. The system is excited by a sinusoidal force with disorder, or random phase modulation. The mean excitation frequency corresponds to a simple or subharmonic resonance, i.e. the value of its ratio to the natural frequency of the system without a barrier is close to some even integer. Influence of white-noise fluctuations of the instantaneous excitation frequency around its mean on the response is studied in this paper. The analysis is based on a special Zhuravlev transformation, which reduces the system to one without impacts, or velocity jumps, thereby permitting the application of asymptotic averaging over the period for slowly varying inphase and quadrature responses. The averaged stochastic equations are solved exactly by the method of moments for the mean square response amplitude for the case of zero offset. A perturbation-based moment closure scheme is proposed for the case of nonzero offset and small random variations of amplitude. Therefore, the analytical results may be expected to be adequate for small values of excitation/system bandwidth ratio or for small intensities of the excitation frequency variations. However, at very large values of the parameter the results are approaching those predicted by a stochastic averaging method. Moreover, Monte-Carlo simulation has shown the moment closure results to be sufficiently accurate in general for any arbitrary bandwidth ratio. The basic conclusion, both of analytical and numerical simulation studies, is a sort of ‘smearing’ of the amplitude frequency response curves owing to disorder, or random phase modulation: peak amplitudes may be strongly reduced, whereas somewhat increased response may be expected at large detunings, where response amplitudes to perfectly periodic excitation are relatively small.