Some New Old-Fashioned Modular Identities

被引:0
|
作者
Paul T. Bateman
Marvin I. Knopp
机构
[1] University of Illinois at Urbana-Champaign,Department of Mathematics
[2] Temple University,Department of Mathematics
来源
The Ramanujan Journal | 1998年 / 2卷
关键词
modular forms; sum-of-divisors function; theta group; sums of squares; singular series;
D O I
暂无
中图分类号
学科分类号
摘要
This paper uses modular functions on the theta group to derive an exact formula for the sum \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sum\limits_{\left| j \right| \leqslant n^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } {\sigma \left( {n - j^2 } \right)} $$ \end{document} in terms of the singular series for the number of representations of an integer as a sum of five squares. (Here σ(k) denotes the sum of the divisors of k if k is a positive integer and σ(0) =-1/24.)
引用
下载
收藏
页码:247 / 269
页数:22
相关论文
共 50 条