Cereal area and nitrogen use efficiency are drivers of future nitrogen fertilizer consumption

被引:24
|
作者
Achim Dobermann
Kenneth G. Cassman
机构
[1] University of Nebraska-Lincoln,Department of Agronomy and Horticulture
来源
Science in China Series C: Life Sciences | 2005年 / 48卷 / Suppl 2期
关键词
nitrogen; cereals; nitrogen use efficiency; fertilizer requirements; global food security;
D O I
10.1007/BF03187115
中图分类号
学科分类号
摘要
At a global scale, cereal yields and fertilizer N consumption have increased in a near-linear fashion during the past 40 years and are highly correlated with one another. However, large differences exist in historical trends of N fertilizer usage and nitrogen use efficiency (NUE) among regions, countries, and crops. The reasons for these differences must be understood to estimate future N fertilizer requirements. Global nitrogen needs will depend on: (i) changes in cropped cereal area and the associated yield increases required to meet increasing cereal demand from population and income growth, and (ii) changes in NUE at the farm level. Our analysis indicates that the anticipated 38% increase in global cereal demand by 2025 can be met by a 30% increase in N use on cereals, provided that the steady decline in cereal harvest area is halted and the yield response to applied N can be increased by 20%. If losses of cereal cropping area continue at the rate of the past 20 years (−0.33% per year) and NUE cannot be increased substantially, a 60% increase in global N use on cereals would be required to meet cereal demand. Interventions to increase NUE and reduce N losses to the environment must be accomplished at the farm-or field-scale through a combination of improved technologies and carefully crafted local policies that contribute to the adoption of improved N management; uniform regional or national directives are unlikey to be effective at both sustaining yield increases and improving NUE. Examples from several countries show that increases in NUE at rates of 1% per year or more can be achieved if adequate investments are made in research and extension. Failure to arrest the decrease in cereal crop area and to improve NUE in the world’s most important agricultural systems will likely cause severe damage to environmental services at local, regional, and global scales due to a large increase in reactive N load in the environment.
引用
收藏
页码:745 / 758
页数:13
相关论文
共 50 条
  • [1] Cereal area and nitrogen use efficiency are drivers of future nitrogen fertilizer consumption
    Dobermann, A
    Cassman, KG
    SCIENCE IN CHINA SERIES C-LIFE SCIENCES, 2005, 48 : 745 - 758
  • [2] Cereal area and nitrogen use efficiency are drivers of future nitrogen fertilizer consumption
    Achim Dobermann
    Kenneth G.Cassman
    Science China Life Sciences, 2005, (S2) : 745 - 758
  • [3] Nitrogen fertilizer response and use efficiency for three cereal crops in Niger
    Pandey, RK
    Maranville, JW
    Bako, Y
    COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 2001, 32 (9-10) : 1465 - 1482
  • [4] Efficiency of fertilizer nitrogen in cereal production: Retrospects and prospects
    Ladha, JK
    Pathak, H
    Krupnik, TJ
    Six, J
    van Kessel, C
    ADVANCES IN AGRONOMY, VOL 87, 2005, 87 : 85 - 156
  • [5] Nitrogen balance and nitrogen use efficiency in cereal production in Norway
    Ogaard, Anne Falk
    ACTA AGRICULTURAE SCANDINAVICA SECTION B-SOIL AND PLANT SCIENCE, 2014, 63 : 146 - 155
  • [6] Improving nitrogen use efficiency for cereal production
    Raun, WR
    Johnson, GV
    AGRONOMY JOURNAL, 1999, 91 (03) : 357 - 363
  • [7] FERTILIZER NITROGEN CONSUMPTION
    MEHRING, AL
    INDUSTRIAL AND ENGINEERING CHEMISTRY, 1945, 37 (03): : 289 - 295
  • [9] Integrated nitrogen fertilizer management for improving wheat yield and the efficiency of water and nitrogen fertilizer use
    Liu, Houhua
    Mi, Xiaotian
    Wei, Lei
    Kang, Jiayi
    He, Gang
    EUROPEAN JOURNAL OF AGRONOMY, 2024, 159
  • [10] Accumulation and translocation of nitrogen in spring cereal cultivars differing in nitrogen use efficiency
    Muurinen, S.
    Kleemola, J.
    Peltonen-Sainio, P.
    AGRONOMY JOURNAL, 2007, 99 (02) : 441 - 449