Natural Deduction Calculi and Sequent Calculi for Counterfactual Logics

被引:0
|
作者
Francesca Poggiolesi
机构
[1] Université Paris 1 Panthéon-Sorbonne,
[2] CNRS,undefined
[3] ENS,undefined
[4] UMR 8590 IHPST - Institut d’Histoire et de Philosophie des Sciences et des Techniques,undefined
来源
Studia Logica | 2016年 / 104卷
关键词
Natural deduction calculus; Sequent calculus; Normalization; Counterfactual logics;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we present labelled sequent calculi and labelled natural deduction calculi for the counterfactual logics CK + {ID, MP}. As for the sequent calculi we prove, in a semantic manner, that the cut-rule is admissible. As for the natural deduction calculi we prove, in a purely syntactic way, the normalization theorem. Finally, we demonstrate that both calculi are sound and complete with respect to Nute semantics [12] and that the natural deduction calculi can be effectively transformed into the sequent calculi.
引用
收藏
页码:1003 / 1036
页数:33
相关论文
共 50 条
  • [1] Natural Deduction Calculi and Sequent Calculi for Counterfactual Logics
    Poggiolesi, Francesca
    [J]. STUDIA LOGICA, 2016, 104 (05) : 1003 - 1036
  • [2] ON THE CONNECTION BETWEEN SEQUENT-CALCULI AND NATURAL DEDUCTION
    PEREIRA, LCPD
    [J]. JOURNAL OF SYMBOLIC LOGIC, 1986, 51 (03) : 854 - 855
  • [3] Sequent Calculi for Choice Logics
    Bernreiter, Michael
    Lolic, Anela
    Maly, Jan
    Woltran, Stefan
    [J]. AUTOMATED REASONING, IJCAR 2022, 2022, 13385 : 331 - 349
  • [4] Sequent Calculi for Choice Logics
    Bernreiter, Michael
    Lolic, Anela
    Maly, Jan
    Woltran, Stefan
    [J]. JOURNAL OF AUTOMATED REASONING, 2024, 68 (02)
  • [5] Sequent of relations calculi:: A framework for analytic deduction in many-valued logics
    Baaz, M
    Ciabattoni, A
    Fermüller, CG
    [J]. BEYOND TWO: THEORY AND APPLICATIONS OF MULTIPLE-VALUED LOGIC, 2003, 114 : 157 - 180
  • [6] Sequent calculi for default and autoepistemic logics
    Bonatti, PA
    [J]. THEOREM PROVING WITH ANALYTIC TABLEAUX AND RELATED METHODS, 1996, 1071 : 127 - 142
  • [7] Graphical Sequent Calculi for Modal Logics
    Ma, Minghui
    Pietarinen, Ahti-Veikko
    [J]. ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2017, (243): : 91 - 103
  • [8] Sequent-Calculi for Metainferential Logics
    Bruno Da Ré
    Federico Pailos
    [J]. Studia Logica, 2022, 110 : 319 - 353
  • [9] SEQUENT CALCULI FOR SOME TRILATTICE LOGICS
    Kamide, Norihiro
    Wansing, Heinrich
    [J]. REVIEW OF SYMBOLIC LOGIC, 2009, 2 (02): : 374 - 395
  • [10] Sequent-Calculi for Metainferential Logics
    Da Re, Bruno
    Pailos, Federico
    [J]. STUDIA LOGICA, 2022, 110 (02) : 319 - 353