Nonlinear modes of vibrations for simply supported cylindrical shell with geometrical nonlinearity

被引:0
|
作者
K. V. Avramov
机构
[1] National Academy of Sciences of Ukraine,A.N. Podgorny Institute for Mechanical Engineering Problems
来源
Acta Mechanica | 2012年 / 223卷
关键词
Cylindrical Shell; Free Vibration; Periodic Motion; Nonlinear Vibration; Nonlinear Algebraic Equation;
D O I
暂无
中图分类号
学科分类号
摘要
The system of three partial differential equations with respect to displacements (Donnell equations) is used to analyze nonlinear vibrations of a cylindrical shell. The Galerkin method is applied to every partial differential equation to obtain a finite-degree-of-freedom model of the shell. The system of ordinary differential equations with respect to the general coordinates of the radial shell displacements is derived. The nonlinear modes of free vibrations are calculated using the harmonic balance method. The stability analysis of periodic motions is performed.
引用
收藏
页码:279 / 292
页数:13
相关论文
共 50 条
  • [1] Nonlinear modes of vibrations for simply supported cylindrical shell with geometrical nonlinearity
    Avramov, K. V.
    [J]. ACTA MECHANICA, 2012, 223 (02) : 279 - 292
  • [2] Nonlinear normal modes and forced vibrations of simply supported cylindrical shells
    Mikhlin, YV
    Avramov, KV
    Kurilov, E
    [J]. Shell Structures: Theory and Applications, 2005, : 387 - 391
  • [3] Nonlinear Vibrations of FGM Cylindrical Panel with Simply Supported Edges in Air Flow
    Hao, Y. X.
    Zhang, W.
    Li, S. B.
    Zhang, J. H.
    [J]. INTERNATIONAL JOURNAL OF AEROSPACE ENGINEERING, 2015, 2015
  • [4] Nonlinear vibrations of simply supported, circular cylindrical shells, coupled to quiescent fluid
    Amabili, M
    Pellicano, F
    Païdoussis, MP
    [J]. JOURNAL OF FLUIDS AND STRUCTURES, 1998, 12 (07) : 883 - 918
  • [5] Nonlinear vibrations of a cylindrical shell
    Bukashkina, O.S.
    [J]. 2000, Izdatel'stvo Sankt-Peterburgskogo
  • [6] Nonlinear vibration of axially moving simply-supported circular cylindrical shell
    Mohamadi, Arash
    Shahgholi, Majid
    Ghasemi, Faramarz Ashenai
    [J]. THIN-WALLED STRUCTURES, 2020, 156
  • [7] INFLUENCE OF GEOMETRICAL NONLINEARITY OF SLOPED SPHERICAL BOTTOM SHELL ON LONGITUDINAL LIQUID VIBRATIONS IN CYLINDRICAL TANK
    OBRAZTSOVA, EI
    SHKLYARCHUK, FN
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII AVIATSIONAYA TEKHNIKA, 1979, (04): : 41 - 46
  • [8] INFLUENCE OF GEOMETRIC IMPERFECTIONS AND INPLANE CONSTRAINTS ON NONLINEAR VIBRATIONS OF SIMPLY SUPPORTED CYLINDRICAL PANELS
    HUI, D
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1984, 51 (02): : 383 - 390
  • [9] Nonlinear coupled multi-mode vibrations of simply-supported cylindrical shells: Comparison studies
    Dong, Youheng
    Hu, Haiyan
    Wang, Lifeng
    Mao, Xiaochen
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 128
  • [10] Numerical Analysis of Thin Cylindrical Shell Vibrations with a Weak Nonlinearity
    Kudaibergenov, Askat K.
    Kudaibergenov, Askar K.
    Khajiyeva, L. A.
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS AND PHYSICS, 2023, 14 (01): : 4 - 11