Characterizing strict efficiency for convex multiobjective programming problems

被引:0
|
作者
Anjana Gupta
Aparna Mehra
Davinder Bhatia
机构
[1] M.A.I.T,Department of Mathematics
[2] G.G.S.I.P.U.,Department of Mathematics
[3] Indian Institute of Technology Delhi,Department of Operational Research
[4] University of Delhi,undefined
来源
关键词
Multiobjective programming problem; Strict local efficientsolution; D. C. optimization; Convex subdifferential; Saddle pointof higher order; Primary: 90C29; Secondary: 49K30;
D O I
暂无
中图分类号
学科分类号
摘要
The article pertains to characterize strict local efficient solution (s.l.e.s.) of higher order for the multiobjective programming problem (MOP) with inequality constraints. To create the necessary framework, we partition the index set of objectives of MOP to give rise to subproblems. The s.l.e.s. of order m for MOP is related to the local efficient solution of a subproblem. This relationship inspires us to adopt the D.C. optimization approach, the convex subdifferential sum rule, and the notion of ε-subdifferential to derive the necessary and sufficient optimality conditions for s.l.e.s. of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${m \geqq 1}$$\end{document} for the convex MOP. Further, the saddle point criteria of higher order are also presented.
引用
收藏
页码:265 / 280
页数:15
相关论文
共 50 条