The Bjerknes feedback in the tropical Atlantic in CMIP5 models

被引:0
|
作者
Anna-Lena Deppenmeier
Reindert J. Haarsma
Wilco Hazeleger
机构
[1] Wageningen University,Meteorology and Air Quality Department
[2] Royal Netherlands Meteorological Institute (KNMI),R&D Weather and Climate Modeling
[3] Netherlands eScience Center (NLeSC),undefined
来源
Climate Dynamics | 2016年 / 47卷
关键词
Tropical Atlantic variability; Bjerknes feedback; Air–sea interaction; Climate modeling;
D O I
暂无
中图分类号
学科分类号
摘要
Coupled state-of-the-art general circulation models still perform relatively poorly in simulating tropical Atlantic (TA) climate. To investigate whether lack of air–sea interaction might be responsible for their biases, we investigate the Bjerknes feedback (BF) in the TA, the driver of the dominant interannual variability in that region. First, we analyse this mechanism from reanalysis data. Then, we compare our findings to model output from the Coupled Model Intercomparison Project Phase 5. The feedback is subdivided into three components. The first one consists of the influence of eastern equatorial sea surface temperature anomalies (SST’) on zonal wind stress anomalies (τu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _u$$\end{document}’) in the western basin. The second component is the influence of wind stress anomalies in the western TA on eastern equatorial oceanic heat content anomalies (HC’). The third component is the local response of overlying SST’ to HC’ in the eastern TA. All three components are shown to be present in ERA-Interim and ORAS4 reanalysis by correlating the two variables of each component with each other. The obtained patterns are compared to the ones from model output via pattern correlation per component. While the models display errors in the annual cycles of SST, τu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _u$$\end{document}, and HC, as well as in the seasonality of the feedback, the impact of SST’ on wind stress and the impact of wind stress on HC’ are simulated relatively well by most of the models. This is especially the case when correcting for the error in seasonality. The third component of the BF, the impact of HC’ on SST’ in the eastern part of the basin, deviates from what we find in reanalysis. We find an influence of HC anomalies on overlying SSTs in the eastern equatorial TA, but it is weaker than in the reanalysis and it is not strongly confined to the equator. Longitude–depth cross sections of equatorial temperature variance and correlation between subsurface temperature anomalies and SST’ in the cold tongue region show that flawed simulation and slow adjustment of the subsurface ocean are responsible for this.
引用
收藏
页码:2691 / 2707
页数:16
相关论文
共 50 条
  • [1] The Bjerknes feedback in the tropical Atlantic in CMIP5 models
    Deppenmeier, Anna-Lena
    Haarsma, Reindert J.
    Hazeleger, Wilco
    [J]. CLIMATE DYNAMICS, 2016, 47 (7-8) : 2691 - 2707
  • [2] Bjerknes Compensation in the CMIP5 Climate Models
    Outten, Stephen
    Esau, Igor
    Ottera, Odd Helge
    [J]. JOURNAL OF CLIMATE, 2018, 31 (21) : 8745 - 8760
  • [3] The Atlantic ITCZ bias in CMIP5 models
    Angela Cheska Siongco
    Cathy Hohenegger
    Bjorn Stevens
    [J]. Climate Dynamics, 2015, 45 : 1169 - 1180
  • [4] The Atlantic ITCZ bias in CMIP5 models
    Siongco, Angela Cheska
    Hohenegger, Cathy
    Stevens, Bjorn
    [J]. CLIMATE DYNAMICS, 2015, 45 (5-6) : 1169 - 1180
  • [5] Projected Increases in North Atlantic Tropical Cyclone Intensity from CMIP5 Models
    Villarini, Gabriele
    Vecchi, Gabriel A.
    [J]. JOURNAL OF CLIMATE, 2013, 26 (10) : 3231 - 3240
  • [6] Role of north tropical atlantic SST on the ENSO simulated using CMIP3 and CMIP5 models
    Yoo-Geun Ham
    Jong-Seong Kug
    [J]. Climate Dynamics, 2015, 45 : 3103 - 3117
  • [7] Role of north tropical atlantic SST on the ENSO simulated using CMIP3 and CMIP5 models
    Ham, Yoo-Geun
    Kug, Jong-Seong
    [J]. CLIMATE DYNAMICS, 2015, 45 (11-12) : 3103 - 3117
  • [8] On the misinterpretation of the North Atlantic Oscillation in CMIP5 models
    Paolo Davini
    Chiara Cagnazzo
    [J]. Climate Dynamics, 2014, 43 : 1497 - 1511
  • [9] On the misinterpretation of the North Atlantic Oscillation in CMIP5 models
    Davini, Paolo
    Cagnazzo, Chiara
    [J]. CLIMATE DYNAMICS, 2014, 43 (5-6) : 1497 - 1511
  • [10] Simulations of the North Tropical Atlantic Mode-ENSO Connection in CMIP5 and CMIP6 Models
    Tian, Qi
    Ding, Ruiqiang
    Li, Jianping
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2023, 128 (16)