A trust-region LP-Newton method for constrained nonsmooth equations under Hölder metric subregularity

被引:0
|
作者
Letícia Becher
Damián Fernández
Alberto Ramos
机构
[1] Federal University of Paraná,Departamento de Matemática
[2] Universidad de Tarapacá,undefined
[3] CIEM-CONICET,undefined
[4] FAMAF-Universidad Nacional de Córdoba,undefined
关键词
Nonlinear equations; Newton method; Global convergence; Superlinear convergence; LP-Newton method; 90C33; 90C30; 49M15; 65K05;
D O I
暂无
中图分类号
学科分类号
摘要
We describe and analyze a globally convergent algorithm to find a possible nonisolated zero of a piecewise smooth mapping over a polyhedral set. Such formulation includes Karush–Kuhn–Tucker systems, variational inequalities problems, and generalized Nash equilibrium problems. Our algorithm is based on a modification of the fast locally convergent Linear Programming (LP)-Newton method with a trust-region strategy for globalization that makes use of the natural merit function. The transition between global and local convergence occurs naturally under mild assumption. Our local convergence analysis of the method is performed under a Hölder metric subregularity condition of the mapping defining the possibly nonsmooth equation and the Hölder continuity of the derivative of the selection mapping. We present numerical results that show the feasibility of the approach.
引用
收藏
页码:711 / 743
页数:32
相关论文
共 18 条
  • [1] A trust-region LP-Newton method for constrained nonsmooth equations under Holder metric subregularity
    Becher, Leticia
    Fernandez, Damian
    Ramos, Alberto
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2023, 86 (02) : 711 - 743
  • [2] An LP-Newton method: nonsmooth equations, KKT systems, and nonisolated solutions
    Francisco Facchinei
    Andreas Fischer
    Markus Herrich
    Mathematical Programming, 2014, 146 : 1 - 36
  • [3] An LP-Newton method: nonsmooth equations, KKT systems, and nonisolated solutions
    Facchinei, Francisco
    Fischer, Andreas
    Herrich, Markus
    MATHEMATICAL PROGRAMMING, 2014, 146 (1-2) : 1 - 36
  • [4] Local convergence of the Levenberg–Marquardt method under Hölder metric subregularity
    Masoud Ahookhosh
    Francisco J. Aragón Artacho
    Ronan M. T. Fleming
    Phan T. Vuong
    Advances in Computational Mathematics, 2019, 45 : 2771 - 2806
  • [5] A PROXIMAL QUASI-NEWTON TRUST-REGION METHOD FOR NONSMOOTH REGULARIZED OPTIMIZATION
    Aravkin, Aleksandr Y.
    Baraldi, Robert
    Orban, Dominique
    SIAM JOURNAL ON OPTIMIZATION, 2022, 32 (02) : 900 - 929
  • [6] Active-Set Projected Trust-Region Algorithm for Box-Constrained Nonsmooth Equations
    L. Qi
    X. J. Tong
    D. H. Li
    Journal of Optimization Theory and Applications, 2004, 120 : 601 - 625
  • [7] Active-set projected trust-region algorithm for box-constrained nonsmooth equations
    Qi, L
    Tong, XJ
    Li, DH
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2004, 120 (03) : 601 - 625
  • [8] A globally convergent LP-Newton method for piecewise smooth constrained equations: escaping nonstationary accumulation points
    Fischer, A.
    Herrich, M.
    Izmailov, A. F.
    Scheck, W.
    Solodov, M. V.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2018, 69 (02) : 325 - 349
  • [9] A globally convergent LP-Newton method for piecewise smooth constrained equations: escaping nonstationary accumulation points
    A. Fischer
    M. Herrich
    A. F. Izmailov
    W. Scheck
    M. V. Solodov
    Computational Optimization and Applications, 2018, 69 : 325 - 349
  • [10] A limited memory quasi-Newton trust-region method for box constrained optimization
    Rahpeymaii, Farzad
    Kimiaei, Morteza
    Bagheri, Alireza
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 303 : 105 - 118