Holomorphic Anomaly Equations for the Formal Quintic

被引:0
|
作者
Hyenho Lho
Rahul Pandharipande
机构
[1] ETH Zürich,Department of Mathematics
关键词
Gromov–Witten invariants; Holomorphic anomaly equations; Quintic threefold;
D O I
10.1007/s42543-018-0008-0
中图分类号
学科分类号
摘要
We define a formal Gromov–Witten theory of the quintic threefold via localization on P4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {P}}^4$$\end{document}. Our main result is a direct geometric proof of holomorphic anomaly equations for the formal quintic in precisely the same form as predicted by B-model physics for the true Gromov–Witten theory of the quintic threefold. The results suggest that the formal quintic and the true quintic theories should be related by transformations which respect the holomorphic anomaly equations. Such a relationship has been recently found by Q. Chen, S. Guo, F. Janda, and Y. Ruan via the geometry of new moduli spaces.
引用
收藏
页码:1 / 40
页数:39
相关论文
共 50 条