The stability of the solutions of an equation related to the p-Laplacian with degeneracy on the boundary

被引:0
|
作者
Huashui Zhan
机构
[1] Xiamen University of Technology,School of Applied Mathematics
来源
关键词
stability; boundary degeneracy; the ; -Laplacian; 35L65; 35L85; 35R35;
D O I
暂无
中图分类号
学科分类号
摘要
The equation related to the p-Laplacian ut=div(ρα|∇u|p−2∇u)+∑i=1N∂bi(u)∂xi,(x,t)∈Ω×(0,T),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{t}= \operatorname{div} \bigl(\rho^{\alpha} \vert \nabla u \vert ^{p - 2}\nabla u \bigr) + \sum_{i = 1}^{N} \frac{\partial b_{i}(u)}{\partial x_{i}},\quad (x,t) \in \Omega \times(0,T), $$\end{document} is considered, where ρ(x)=dist(x,∂Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\rho(x) = \operatorname{dist} (x,\partial\Omega )$\end{document} is the distance function from the boundary. If α<p−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha< p-1$\end{document}, the weak solution belongs to Hγ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H^{\gamma}$\end{document} for some γ>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma>1$\end{document}, the Dirichlet boundary condition can be imposed as usual, the stability of the solutions is proved. If α≥p−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha\geq p-1$\end{document}, the weak solution lacks the regularity to define the trace on the boundary. It is surprising that we can still prove the stability of the solutions without any boundary condition. In other words, when α≥p−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha\geq p-1$\end{document}, the phenomenon that the solutions of the equation may be free from any limitations of the boundary condition is revealed.
引用
收藏
相关论文
共 50 条
  • [1] The stability of the solutions of an equation related to the p-Laplacian with degeneracy on the boundary
    Zhan, Huashui
    BOUNDARY VALUE PROBLEMS, 2016,
  • [2] Evolutionary weighted p-Laplacian with boundary degeneracy
    Yin Jingxue
    Wang Chunpeng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 237 (02) : 421 - 445
  • [3] Boundary behavior of solutions to fractional p-Laplacian equation
    Ataei, Alireza
    ADVANCES IN CALCULUS OF VARIATIONS, 2025, 18 (02) : 255 - 273
  • [4] The viscosity solutions of a nonlinear equation related to the p-Laplacian
    Ou, Qitong
    Zhan, Huashui
    AIMS MATHEMATICS, 2017, 2 (03): : 400 - 421
  • [5] Multiplicity of solutions for a p-Laplacian equation with nonlinear boundary conditions
    Zivari-Rezapour, Mohsen
    Jalalvand, Mehdi
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2019, 7 (03): : 475 - 479
  • [6] Nodal solutions of a p-Laplacian equation
    Bartsch, T
    Liu, ZL
    Weth, T
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2005, 91 : 129 - 152
  • [7] Weak solutions for p-Laplacian equation
    Bhuvaneswari, Venkatasubramaniam
    Lingeshwaran, Shangerganesh
    Balachandran, Krishnan
    ADVANCES IN NONLINEAR ANALYSIS, 2012, 1 (04) : 319 - 334
  • [8] Radial solutions for the p-Laplacian equation
    Bachar, Imed
    Ben Othman, Sonia
    Maagli, Habib
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (06) : 2198 - 2205
  • [9] Global attractors for weighted p-Laplacian equations with boundary degeneracy
    Ma, Shan
    Li, Hongtao
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (01)
  • [10] On a parabolic equation related to the p-Laplacian
    Huashui Zhan
    Boundary Value Problems, 2016