Robust estimation of the correlation matrix of longitudinal data

被引:0
|
作者
Mehdi Maadooliat
Mohsen Pourahmadi
Jianhua Z. Huang
机构
[1] Texas A&M University,Department of Statistics
来源
Statistics and Computing | 2013年 / 23卷
关键词
Cholesky decomposition; Correlation modeling; Multivariate t; Robust estimation;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a double-robust procedure for modeling the correlation matrix of a longitudinal dataset. It is based on an alternative Cholesky decomposition of the form Σ=DLL⊤D where D is a diagonal matrix proportional to the square roots of the diagonal entries of Σ and L is a unit lower-triangular matrix determining solely the correlation matrix. The first robustness is with respect to model misspecification for the innovation variances in D, and the second is robustness to outliers in the data. The latter is handled using heavy-tailed multivariate t-distributions with unknown degrees of freedom. We develop a Fisher scoring algorithm for computing the maximum likelihood estimator of the parameters when the nonredundant and unconstrained entries of (L,D) are modeled parsimoniously using covariates. We compare our results with those based on the modified Cholesky decomposition of the form LD2L⊤ using simulations and a real dataset.
引用
收藏
页码:17 / 28
页数:11
相关论文
共 50 条
  • [1] Robust estimation of the correlation matrix of longitudinal data
    Maadooliat, Mehdi
    Pourahmadi, Mohsen
    Huang, Jianhua Z.
    STATISTICS AND COMPUTING, 2013, 23 (01) : 17 - 28
  • [2] Robust estimation for the correlation matrix of multivariate longitudinal data
    Lu, Fei
    Xue, Liugen
    Hu, Yuping
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (13) : 2473 - 2496
  • [3] Robust and sparse correlation matrix estimation for the analysis of high-dimensional genomics data
    Serra, Angela
    Coretto, Pietro
    Fratello, Michele
    Tagliaferri, Roberto
    BIOINFORMATICS, 2018, 34 (04) : 625 - 634
  • [4] Parsimonious covariance matrix estimation for longitudinal data
    Smith, M
    Kohn, R
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (460) : 1141 - 1153
  • [5] Bayesian Estimation of Correlation Matrices of Longitudinal Data
    Ghosh, Riddhi Pratim
    Mallick, Bani
    Pourahmadi, Mohsen
    BAYESIAN ANALYSIS, 2021, 16 (03): : 1039 - 1058
  • [6] Robust estimation of models for longitudinal data with dropouts and outliers
    Zhang, Yuexia
    Qin, Guoyou
    Zhu, Zhongyi
    Fu, Bo
    JOURNAL OF APPLIED STATISTICS, 2022, 49 (04) : 902 - 925
  • [7] Robust estimation for longitudinal data with informative observation times
    Liu, Kin-yat
    Zhao, Xingqiu
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2015, 43 (04): : 519 - 533
  • [8] Robust estimation of mean and covariance for longitudinal data with dropouts
    Qin, Guoyou
    Zhu, Zhongyi
    JOURNAL OF APPLIED STATISTICS, 2015, 42 (06) : 1240 - 1254
  • [9] Informative Estimation and Selection of Correlation Structure for Longitudinal Data
    Zhou, Jianhui
    Qu, Annie
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (498) : 701 - 710
  • [10] Robust Estimation of the Covariance Matrix From Data With Outliers
    Stoica, Petre
    Babu, Prabhu
    Varshney, Piyush
    IEEE OPEN JOURNAL OF SIGNAL PROCESSING, 2024, 5 : 1061 - 1072