The Entropy in Learning Theory. Error Estimates

被引:0
|
作者
S.V. Konyagin
V.N. Temlyakov
机构
[1] Department of Mechanics and Mathematics,
[2] Moscow State University,undefined
[3] Vorobjovy Gory,undefined
[4] Department of Mathematics,undefined
[5] University of South Carolina,undefined
来源
关键词
Error Estimate; Lebesgue Measure; Learn Theory; Borel Probability Measure; Uniform Norm;
D O I
暂无
中图分类号
学科分类号
摘要
We continue the investigation of some problems in learning theory in the setting formulated by F. Cucker and S. Smale. The goal is to find an estimator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f_{\bf z}$\end{document} on the base of given data \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mbox{\footnotesize\bf z}:=((x_1,y_1),\dots,(x_m,y_m))$\end{document} that approximates well the regression function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f_\rho$\end{document} of an unknown Borel probability measure \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\rho$\end{document} defined on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Z=X\times Y.$\end{document} We assume that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f_\rho$\end{document} belongs to a function class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Theta.$\end{document} It is known from previous works that the behavior of the entropy numbers \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\epsilon_n(\Theta,{\cal C})$\end{document} of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Theta$\end{document} in the uniform norm \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\cal C}$\end{document} plays an important role in the above problem. The standard way of measuring the error between a target function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f_\rho$\end{document} and an estimator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f_{\bf z}$\end{document} is to use the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_2(\rho_X)$\end{document} norm (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\rho_X$\end{document} is the marginal probability measure on X generated by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\rho$\end{document}). This method has been used in previous papers. We continue to use this method in this paper. The use of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_2(\rho_X)$\end{document} norm in measuring the error has motivated us to study the case when we make an assumption on the entropy numbers \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\epsilon_n(\Theta,L_2(\rho_X))$\end{document} of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Theta$\end{document} in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_2(\rho_X)$\end{document} norm. This is the main new ingredient of thispaper. We construct good estimators in different settings: (1) we know both \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Theta$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\rho_X$\end{document}; (2) we know \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Theta$\end{document} but we do not know \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\rho_X;$\end{document} and (3) we only know that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Theta$\end{document} is from a known collection of classes but we do not know \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\rho_X.$\end{document} An estimator from the third setting is called a universal estimator.
引用
收藏
页码:1 / 27
页数:26
相关论文
共 50 条
  • [1] The entropy in learning theory. Error estimates
    Konyagin, S. V.
    Temlyakov, V. N.
    CONSTRUCTIVE APPROXIMATION, 2007, 25 (01) : 1 - 27
  • [2] On an error in the new lunar theory.
    Brown, EW
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1909, 70 (01) : 0003 - 0003
  • [3] Learning Theory Approach to Minimum Error Entropy Criterion
    Hu, Ting
    Fan, Jun
    Wu, Qiang
    Zhou, Ding-Xuan
    JOURNAL OF MACHINE LEARNING RESEARCH, 2013, 14 : 377 - 397
  • [5] Learning direction theory.
    Selten, R
    JOURNAL OF MATHEMATICAL PSYCHOLOGY, 1996, 40 (04) : 373 - 373
  • [6] THEORY OF APPROXIMATION OF PATTERN SETS BASED ON THE epsilon -ENTROPY THEORY.
    Kondo, Syozo
    Systems - Computers - Controls, 1973, 4 (05): : 1 - 7
  • [7] Error Estimates of Homogenization Theory
    Song, Wei-Dong
    Ning, Jian-Guo
    Wang, Jing
    Li, Jian-Qiao
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2012, 13 (3-4) : 295 - 298
  • [8] ERROR ESTIMATES IN REACTOR THEORY
    RONEN, Y
    NUCLEAR SCIENCE AND ENGINEERING, 1972, 47 (02) : 195 - &
  • [9] Learning theory of minimum error entropy under weak moment conditions
    Huang, Shouyou
    Feng, Yunlong
    Wu, Qiang
    ANALYSIS AND APPLICATIONS, 2022, 20 (01) : 121 - 139
  • [10] THEORY. METHOD, FOURIER ANALYSIS, AND DISPASE SAMPLING ERROR
    Miranda Mercado, David Alejandro
    Barrero Perez, Jaime Guillermo
    UIS INGENIERIAS, 2007, 6 (01): : 25 - 33