On the number of special numbers

被引:0
|
作者
KEVSER AKTAŞ
M RAM MURTY
机构
[1] Gazi University,Department of Mathematics Education
[2] Queen’s University,Department of Mathematics and Statistics
来源
关键词
Special numbers; squarefull numbers; Thue–Mahler equations; conjecture; Primary: 11BN3; Secondary: 11N25, 11D59;
D O I
暂无
中图分类号
学科分类号
摘要
For lack of a better word, a number is called special if it has mutually distinct exponents in its canonical prime factorizaton for all exponents. Let V(x) be the number of special numbers ≤x. We will prove that there is a constant c>1 such that V(x)∼cxlogx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\displaystyle {V(x) \sim \frac {cx}{\log x}}$\end{document}. We will make some remarks on determining the error term at the end. Using the explicit abc conjecture, we will study the existence of 23 consecutive special integers.
引用
收藏
页码:423 / 430
页数:7
相关论文
共 50 条
  • [1] On the number of special numbers
    Aktas, Kevser
    Murty, M. Ram
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2017, 127 (03): : 423 - 430
  • [2] APPROXIMATION OF NUMBER PI BY ALGEBRAIC NUMBERS FROM SPECIAL FIELDS
    FELDMAN, NI
    [J]. JOURNAL OF NUMBER THEORY, 1977, 9 (01) : 48 - 60
  • [3] 2-CLASS NUMBERS OF SPECIAL QUADRATIC NUMBER FIELDS
    BAUER, H
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1972, 252 : 79 - &
  • [4] On special spacelike hybrid numbers with Fibonacci divisor number components
    Can Kızılateş
    Tiekoro Kone
    [J]. Indian Journal of Pure and Applied Mathematics, 2023, 54 : 279 - 287
  • [5] On special spacelike hybrid numbers with Fibonacci divisor number components
    Kizilates, Can
    Kone, Tiekoro
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023, 54 (01): : 279 - 287
  • [6] Number and Numbers
    Bhattacharyya, Anindya
    [J]. RADICAL PHILOSOPHY, 2009, (156): : 61 - 63
  • [7] The approximate number system represents rational numbers: The special case of an empty set
    Pinhas, Michal
    Zaks-Ohayon, Rut
    Tzelgov, Joseph
    [J]. BEHAVIORAL AND BRAIN SCIENCES, 2021, 44
  • [8] Number and Numbers
    Power, Nina
    [J]. TPM-THE PHILOSOPHERS MAGAZINE, 2008, (42): : 108 - 109
  • [9] On the quantity of numbers of special form depending on the parity of the number of their different prime divisors
    M. E. Changa
    [J]. Mathematical Notes, 2015, 97 : 941 - 945
  • [10] On the quantity of numbers of special form depending on the parity of the number of their different prime divisors
    Changa, M. E.
    [J]. MATHEMATICAL NOTES, 2015, 97 (5-6) : 941 - 945