On Plane Cremona Transformations of Fixed Degree

被引:0
|
作者
Cinzia Bisi
Alberto Calabri
Massimiliano Mella
机构
[1] Università di Ferrara,Dipartimento di Matematica e Informatica
来源
The Journal of Geometric Analysis | 2015年 / 25卷
关键词
Plane Cremona transformations; Homaloidal nets; De Jonquières transformations; 14E07;
D O I
暂无
中图分类号
学科分类号
摘要
We study the quasi-projective variety \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\operatorname{Bir}_{d}$\end{document} of plane Cremona transformations defined by three polynomials of fixed degree d and its subvariety \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\operatorname{Bir}_{d}^{\circ}$\end{document} where the three polynomials have no common factor. We compute their dimension and the decomposition in irreducible components. We prove that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\operatorname{Bir}_{d}$\end{document} is connected for each d and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\operatorname{Bir}_{d}^{\circ}$\end{document} is connected when d<7.
引用
收藏
页码:1108 / 1131
页数:23
相关论文
共 50 条