Computing the Visibility Polygon of an Island in a Polygonal Domain

被引:0
|
作者
Danny Z. Chen
Haitao Wang
机构
[1] University of Notre Dame,Department of Computer Science and Engineering
[2] Utah State University,Department of Computer Science
来源
Algorithmica | 2017年 / 77卷
关键词
Visibility polygons; Polygonal domains; Polygon with holes; Algorithms; Computational geometry;
D O I
暂无
中图分类号
学科分类号
摘要
Given a set P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {P}}$$\end{document} of h pairwise-disjoint polygonal obstacles with a total of n vertices in the plane, we study the problem of computing the (weak) visibility polygon from a polygonal obstacle P∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P^*$$\end{document} (an island) in P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {P}}$$\end{document}. The problem was previously solved in O(n4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^4)$$\end{document} time, which has been proved worst-case optimal. However, since h may be much smaller than n, it is desirable to have an algorithm whose running time is also a function of h. In this paper, we present such an algorithm of O(n2h2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^2h^2)$$\end{document} time, and our algorithm improves the previous result when h=o(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h=o(n)$$\end{document}. In addition, when all obstacles in P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {P}}$$\end{document} (including P∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P^*$$\end{document}) are convex, our algorithm runs in O(n+h4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n+h^4)$$\end{document} time.
引用
收藏
页码:40 / 64
页数:24
相关论文
共 50 条
  • [1] Computing the Visibility Polygon of an Island in a Polygonal Domain
    Chen, Danny Z.
    Wang, Haitao
    [J]. AUTOMATA, LANGUAGES, AND PROGRAMMING, ICALP 2012 PT I, 2012, 7391 : 218 - 229
  • [2] Computing the Visibility Polygon of an Island in a Polygonal Domain
    Chen, Danny Z.
    Wang, Haitao
    [J]. ALGORITHMICA, 2017, 77 (01) : 40 - 64
  • [3] SYSTOLIC ALGORITHMS FOR COMPUTING THE VISIBILITY POLYGON AND TRIANGULATION OF A POLYGONAL REGION
    ASANO, T
    UMEO, H
    [J]. PARALLEL COMPUTING, 1988, 6 (02) : 209 - 216
  • [4] SYSTOLIC ALGORITHMS FOR COMPUTING THE VISIBILITY POLYGON AND TRIANGULATION OF A POLYGONAL REGION
    ASANO, T
    UMEO, H
    [J]. LECTURE NOTES IN COMPUTER SCIENCE, 1987, 269 : 77 - 85
  • [5] COMPUTING THE VISIBILITY POLYGON FROM AN EDGE
    LEE, DT
    LIN, AK
    [J]. COMPUTER VISION GRAPHICS AND IMAGE PROCESSING, 1986, 34 (01): : 1 - 19
  • [6] Visibility Polygon Queries Among Dynamic Polygonal Obstacles in Plane
    Agrawal, Sanjana
    Inkulu, R.
    [J]. COMPUTING AND COMBINATORICS (COCOON 2020), 2020, 12273 : 136 - 148
  • [7] Computing the Visibility Polygon Using Few Variables
    Barba, Luis
    Korman, Matias
    Langerman, Stefan
    Silveira, Rodrigo I.
    [J]. ALGORITHMS AND COMPUTATION, 2011, 7074 : 70 - +
  • [8] Computing visibility information in an inaccurate simple polygon
    Cai, LZ
    Keil, JM
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1997, 7 (06) : 515 - 537
  • [9] Computing a visibility polygon using few variables
    Barba, Luis
    Korman, Matias
    Langerman, Stefan
    Silveira, Rodrigo I.
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2014, 47 (09): : 918 - 926
  • [10] EFFICIENT ALGORITHM FOR FINDING THE VISIBILITY POLYGON FOR A POLYGONAL REGION WITH HOLES.
    Asano, Tetsuo
    [J]. 1600, (E68):