共 50 条
Judicious partitions of uniform hypergraphs
被引:0
|作者:
John Haslegrave
机构:
[1] University of Sheffield,School of Mathematics and Statistics
来源:
Combinatorica
|
2014年
/
34卷
关键词:
05C65;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
The vertices of any graph with m edges may be partitioned into two parts so that each part meets at least \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\tfrac{{2m}}
{3}$$\end{document} edges. Bollobás and Thomason conjectured that the vertices of any r-uniform hypergraph with m edges may likewise be partitioned into r classes such that each part meets at least \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\tfrac{r}
{{2r - 1}}$$\end{document} edges. In this paper we prove the weaker statement that, for each r ≥ 4, a partition into r classes may be found in which each class meets at least \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\tfrac{r}
{{3r - 4}}$$\end{document} edges, a substantial improvement on previous bounds.
引用
收藏
页码:561 / 572
页数:11
相关论文