Judicious partitions of uniform hypergraphs

被引:0
|
作者
John Haslegrave
机构
[1] University of Sheffield,School of Mathematics and Statistics
来源
Combinatorica | 2014年 / 34卷
关键词
05C65;
D O I
暂无
中图分类号
学科分类号
摘要
The vertices of any graph with m edges may be partitioned into two parts so that each part meets at least \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tfrac{{2m}} {3}$$\end{document} edges. Bollobás and Thomason conjectured that the vertices of any r-uniform hypergraph with m edges may likewise be partitioned into r classes such that each part meets at least \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tfrac{r} {{2r - 1}}$$\end{document} edges. In this paper we prove the weaker statement that, for each r ≥ 4, a partition into r classes may be found in which each class meets at least \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tfrac{r} {{3r - 4}}$$\end{document} edges, a substantial improvement on previous bounds.
引用
收藏
页码:561 / 572
页数:11
相关论文
共 50 条
  • [1] On judicious partitions of uniform hypergraphs
    Hou, Jianfeng
    Wu, Shufei
    Yan, Guiying
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2016, 141 : 16 - 32
  • [2] Judicious partitions of uniform hypergraphs
    Haslegrave, John
    COMBINATORICA, 2014, 34 (05) : 561 - 572
  • [3] Judicious partitions of 3-uniform hypergraphs
    Bollobás, B
    Scott, AD
    EUROPEAN JOURNAL OF COMBINATORICS, 2000, 21 (03) : 289 - 300
  • [4] Judicious partitions of hypergraphs
    Bollobas, B
    Scott, AD
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1997, 78 (01) : 15 - 31
  • [5] Judicious partitions of weighted hypergraphs
    XU Xin
    YAN Gui Ying
    ZHANG Yao
    ScienceChina(Mathematics), 2016, 59 (03) : 609 - 616
  • [6] Judicious partitions of weighted hypergraphs
    Xu Xin
    Yan GuiYing
    Zhang Yao
    SCIENCE CHINA-MATHEMATICS, 2016, 59 (03) : 609 - 616
  • [7] Judicious partitions of weighted hypergraphs
    Xin Xu
    GuiYing Yan
    Yao Zhang
    Science China Mathematics, 2016, 59 : 609 - 616
  • [8] On judicious partitions of hypergraphs with edges of size at most 3
    Zhang, Yao
    Tang, Yu Cong
    Yan, Gui Ying
    EUROPEAN JOURNAL OF COMBINATORICS, 2015, 49 : 232 - 239
  • [9] Monochromatic partitions of complete uniform hypergraphs
    Brys, K
    Lonc, Z
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2001, 14 (03) : 286 - 290
  • [10] Distinguishing partitions and asymmetric uniform hypergraphs
    Ellingham, M. N.
    Schroeder, Justin Z.
    ARS MATHEMATICA CONTEMPORANEA, 2011, 4 (01) : 111 - 123