Analysis of Electrical Energy Consumption in a Novel Direct Current Submerged Arc Furnace for Ferrochrome Production

被引:0
|
作者
Yang Yu
Baokuan Li
Zhongqiu Liu
Fengsheng Qi
Chengjun Liu
Wenjie Rong
Shibo Kuang
机构
[1] Northeastern University,College of Metallurgy
[2] Northeastern University,National Frontiers Science Center for Industrial Intelligence and Systems Optimization
[3] Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University),ARC Research Hub for Computational Particle Technology, Department of Chemical Engineering
[4] Ministry of Education,undefined
[5] Monash University,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Submerged arc furnace is a smelting device with high efficiency but huge electricity consumption. A novel structure of direct current (DC) submerged arc furnace is investigated for ferrochrome production to save electric energy. For this purpose, a three-dimensional transient multi-physics model is developed to simulate the furnace. Via the model, the effects of two key variables are quantified: electrode insertion depth and operating voltage. A new criterion, i.e., SAF smelting rate ζ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {\zeta^{ * } } \right)$$\end{document}, is proposed to evaluate the electrical energy consumption. The effects of burden porosity and metallic oxide percentage are clarified with respect to electrical energy consumption. The results show that this DC submerged arc furnace can effectively reduce the electrical energy consumption compared with the AC submerged arc furnace. Increasing the electrode insertion depth and electric voltage, the chromium to iron ratio increases by 72.62 and 39.46 pct. Remarkably, the temperatures of the furnace burden below the anode and cathode are different. With increasing of burden porosity, the ferrochrome production ratio ω∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {\omega^{ * } } \right)$$\end{document} decreases by 120.52 pct and ζ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta^{ * }$$\end{document} increases by 59.73 pct. Moreover, as the Cr2O3 percentage in the furnace burden increases, ω∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega^{ * }$$\end{document} and ζ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta^{ * }$$\end{document} increase by 9.19 and 20.17 pct, respectively. The results are analyzed in detail to understand the smelting process of DC submerged arc furnace for better furnace design.
引用
收藏
页码:2370 / 2382
页数:12
相关论文
共 50 条
  • [1] Analysis of Electrical Energy Consumption in a Novel Direct Current Submerged Arc Furnace for Ferrochrome Production
    Yu, Yang
    Li, Baokuan
    Liu, Zhongqiu
    Qi, Fengsheng
    Liu, Chengjun
    Rong, Wenjie
    Kuang, Shibo
    [J]. METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 2023, 54 (05): : 2370 - 2382
  • [2] Energy and exergy analyses of a submerged arc furnace used for ferrochrome production
    Kapan, Sinan
    Celik, Nevin
    Camdali, Unal
    Taskiran, Ali
    [J]. INTERNATIONAL JOURNAL OF EXERGY, 2024, 44 (02) : 89 - 106
  • [3] Tracking chromium behaviour in submerged arc furnace for ferrochrome production
    Xiao, Yanping
    Yang, Yongxiang
    Holappa, Lauri
    [J]. SOHN INTERNATIONAL SYMPOSIUM ADVANCED PROCESSING OF METALS AND MATERIALS, VOL 1: THERMO AND PHYSICOCHEMICAL PRINCIPLES: NON-FERROUS HIGH-TEMPERATURE PROCESSING, 2006, : 583 - +
  • [4] Development of Cold Bonded Chromite Pellets for Ferrochrome Production in Submerged Arc Furnace
    Dwarapudi, Srinivas
    Tathavadkar, Vilas
    Rao, B. Chenna
    Kumar, T. K. Sandeep
    Ghosh, Tamal K.
    Denys, Mark
    [J]. ISIJ INTERNATIONAL, 2013, 53 (01) : 9 - 17
  • [5] Homogenised model for the electrical current distribution within a submerged arc furnace for silicon production
    Luckins, Ellen K.
    Oliver, James M.
    Please, Colin P.
    Sloman, Benjamin M.
    Van Gorder, Robert A.
    [J]. EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2022, 33 (05) : 828 - 863
  • [6] Ferromanganese Production in a Submerged Arc Furnace: Thermodynamic and Energy Balance Analysis
    JoonHyun Nam
    Marie-Aline Van Ende
    In-Ho Jung
    [J]. JOM, 2022, 74 : 1624 - 1632
  • [7] Ferromanganese Production in a Submerged Arc Furnace: Thermodynamic and Energy Balance Analysis
    Nam, JoonHyun
    Van Ende, Marie-Aline
    Jung, In-Ho
    [J]. JOM, 2022, 74 (04) : 1624 - 1632
  • [8] The effect of the carbonaceous materials properties on the energy consumption of silicon production in the submerged arc furnace
    Chen, Zhengjie
    Zhou, Shichao
    Ma, Wenhui
    Deng, Xiaocong
    Li, Shaoyuan
    Ding, Weimin
    [J]. JOURNAL OF CLEANER PRODUCTION, 2018, 191 : 240 - 247
  • [9] Ferrochrome Production in a Submerged Electric Arc Furnace: Fundamental Analysis Based upon the FactSage-Macro Program Approach
    Singha, Prasenjit
    Das, Swagat
    Kundu, Souvik
    Majumdar, Koushik
    Singh, Awanindra
    Paliwal, Manas
    [J]. STEEL RESEARCH INTERNATIONAL, 2024, 95 (07)
  • [10] REMELTING THE HIGH-CARBON FERROCHROME DUST IN A DIRECT CURRENT ARC FURNACE (DCF)
    Sariev, O.
    Kelamanov, B.
    Zhumagaliyev, Ye
    Kim, S.
    Abdirashit, A.
    Almagambetov, M.
    [J]. METALURGIJA, 2020, 59 (04): : 533 - 536