Berezin Transform and Toeplitz Operators on Bergman Spaces Induced by Regular Weights

被引:1
|
作者
José Ángel Peláez
Jouni Rättyä
Kian Sierra
机构
[1] Universidad de Málaga,Departamento de Análisis Matemático
[2] University of Eastern Finland,undefined
来源
关键词
Bergman space; Berezin transform; Carleson measure; Schatten classes Composition operator; Regular weight; Toeplitz operator; 47B35; 30H20;
D O I
暂无
中图分类号
学科分类号
摘要
Given a regular weight ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} and a positive Borel measure μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} on the unit disc D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}$$\end{document}, the Toeplitz operator associated with μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} is Tμ(f)(z)=∫Df(ζ)Bzω(ζ)¯dμ(ζ),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\mathcal {T}}_\mu (f)(z)=\int _\mathbb {D}f(\zeta )\overline{B_z^\omega (\zeta )}\,\mathrm{d}\mu (\zeta ), \end{aligned}$$\end{document}where Bzω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^\omega _{z}$$\end{document} are the reproducing kernels of the weighted Bergman space Aω2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^2_\omega $$\end{document}. The primary purpose of this paper is to study the interrelationships between the Toeplitz operator Tμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {T}}_\mu $$\end{document}, Carleson measures, and the Berezin transform T~μ(z)=⟨Tμ(Bzω),Bzω⟩Aω2‖Bzω‖Aω22.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \widetilde{{\mathcal {T}}}_\mu (z)=\frac{\langle {\mathcal {T}}_\mu (B^\omega _{z}), B^\omega _{z} \rangle _{A^2_\omega }}{\Vert B_z^\omega \Vert ^2_{A^2_\omega }}. \end{aligned}$$\end{document}We provide descriptions of bounded and compact operators Tμ:Aωp→Aωq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {T}}_\mu :A^p_\omega \rightarrow A^q_\omega $$\end{document}, 1<q,p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<q,p<\infty $$\end{document}, as well as, Schatten class Toeplitz operators Tμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {T}}_\mu $$\end{document} on Aω2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^2_\omega $$\end{document}. The last mentioned characterization is applied to study Schatten class composition operators on Aω2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^2_\omega $$\end{document}.
引用
收藏
页码:656 / 687
页数:31
相关论文
共 50 条
  • [1] Berezin Transform and Toeplitz Operators on Bergman Spaces Induced by Regular Weights
    Pelaez, Jose Angel
    Rattya, Jouni
    Sierra, Kian
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2018, 28 (01) : 656 - 687
  • [2] Berezin transform and Toeplitz operators on harmonic Bergman spaces
    Choe, Boo Rim
    Nam, Kyesook
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (10) : 3135 - 3166
  • [3] Toeplitz Operators and Carleson Measures for Weighted Bergman Spaces Induced by Regular Weights
    Jun Tao DU
    Song Xiao LI
    Hasi WULAN
    [J]. Acta Mathematica Sinica,English Series, 2024, (05) : 1345 - 1359
  • [4] Toeplitz Operators and Carleson Measures for Weighted Bergman Spaces Induced by Regular Weights
    Du, Jun Tao
    Li, Song Xiao
    Wulan, Hasi
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2024, 40 (05) : 1345 - 1359
  • [5] Toeplitz Operators and Carleson Measures for Weighted Bergman Spaces Induced by Regular Weights
    Jun Tao Du
    Song Xiao Li
    Hasi Wulan
    [J]. Acta Mathematica Sinica, English Series, 2024, 40 : 1345 - 1359
  • [6] On Berezin type operators and Toeplitz operators on Bergman spaces
    Prajitura, Gabriel T.
    Zhao, Ruhan
    Zhou, Lifang
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2023, 17 (03)
  • [7] On Berezin type operators and Toeplitz operators on Bergman spaces
    Gabriel T. Prǎjiturǎ
    Ruhan Zhao
    Lifang Zhou
    [J]. Banach Journal of Mathematical Analysis, 2023, 17
  • [8] The Berezin Transform of Toeplitz Operators on the Weighted Bergman Space
    Cezhong Tong
    Junfeng Li
    Hicham Arroussi
    [J]. Potential Analysis, 2022, 57 : 263 - 281
  • [9] The Berezin Transform of Toeplitz Operators on the Weighted Bergman Space
    Tong, Cezhong
    Li, Junfeng
    Arroussi, Hicham
    [J]. POTENTIAL ANALYSIS, 2022, 57 (02) : 263 - 281
  • [10] Toeplitz operators on Bergman spaces with exponential weights
    Zhang, Yiyuan
    Wang, Xiaofeng
    Hu, Zhangjian
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2023, 68 (06) : 974 - 1007