Indicator Functions with Uniformly Bounded Fourier Sums and Large Gaps in the Spectrum

被引:0
|
作者
S. V. Kislyakov
P. S. Perstneva
机构
[1] St. Petersburg Department of the V. A. Steklov Math. Institute,
关键词
Uncertainty principle; Men‘shov correction theorem; Thin spectrum; Primary 43A25; 43A50;
D O I
暂无
中图分类号
学科分类号
摘要
Indicator functions mentioned in the title are constructed on an arbitrary nondiscrete locally compact Abelian group of finite dimension. Moreover, they can be obtained by small perturbation from any indicator function fixed beforehand. In the case of a noncompact group, the term “Fourier sums” should be understood as “partial Fourier integrals”. A certain weighted version of the result is also provided. This version leads to a new Men′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$'$$\end{document}shov-type correction theorem.
引用
收藏
相关论文
共 50 条