Variational Methods for Tomographic Reconstruction with Few Views

被引:0
|
作者
Maïtine Bergounioux
Isabelle Abraham
Romain Abraham
Guillaume Carlier
Erwan Le Pennec
Emmanuel Trélat
机构
[1] Université d’Orléans,Institut Denis Poisson – UMR 7013
[2] CEA Ile de France,CEREMADE, UMR CNRS 7534
[3] Université Paris IX Dauphine,CMAP, École polytechnique, CNRS
[4] Université Paris-Saclay,Laboratoire Jacques
[5] Sorbonne Université (Paris 6),Louis Lions, CNRS Inria, équipe CAGE
来源
关键词
49K40; 45Q05; 65M32; Tomographic reconstruction; variational method; optimal transport; Radon operator; inverse problem; fractional order Hilbert spaces; needlets;
D O I
暂无
中图分类号
学科分类号
摘要
We deal with a severe ill posed problem, namely the reconstruction process of an image during tomography acquisition with (very) few views. We present different methods that we have been investigated during the past decade. They are based on variational analysis. This is a survey paper and we refer to the quoted papers for more details.
引用
收藏
页码:157 / 200
页数:43
相关论文
共 50 条
  • [1] Variational Methods for Tomographic Reconstruction with Few Views
    Bergounioux, Maitine
    Abraham, Isabelle
    Abraham, Romain
    Carlier, Guillaume
    Le Pennec, Erwan
    Trelat, Emmanuel
    MILAN JOURNAL OF MATHEMATICS, 2018, 86 (02) : 157 - 200
  • [2] Reconstruction of Tomographic Images from a Few Views by New Maximum Entropy Approach
    CHEN Shao-hua (College of Phys. & Electron. Techn.
    SemiconductorPhotonicsandTechnology, 2000, (04) : 200 - 203
  • [3] Variational approach to tomographic reconstruction
    Kybic, J
    Blu, T
    Unser, N
    MEDICAL IMAGING: 2001: IMAGE PROCESSING, PTS 1-3, 2001, 4322 : 30 - 39
  • [4] Tomographic Reconstruction from a Few Views: A Multi-Marginal Optimal Transport Approach
    I. Abraham
    R. Abraham
    M. Bergounioux
    G. Carlier
    Applied Mathematics & Optimization, 2017, 75 : 55 - 73
  • [5] Tomographic Reconstruction from a Few Views: A Multi-Marginal Optimal Transport Approach
    Abraham, I.
    Abraham, R.
    Bergounioux, M.
    Carlier, G.
    APPLIED MATHEMATICS AND OPTIMIZATION, 2017, 75 (01): : 55 - 73
  • [6] Variational Bayes Approach For Tomographic Reconstruction
    Ayasso, Hacheme
    Fekih-Salem, Sofia
    Mohammad-Djafari, Ali
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2008, 1073 : 243 - 251
  • [7] TOMOGRAPHIC RECONSTRUCTION OF VASCULAR NETWORK FROM A FEW PROJECTIONS
    HAMON, C
    ROUX, C
    COATRIEUX, JL
    COLLOREC, R
    PROCEEDINGS OF THE ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, PTS 1-4, 1988, : 410 - 411
  • [8] Robust variational reconstruction from multiple views
    Slesareva, Natalia
    Buehler, Thomas
    Hagenburg, Kai Uwe
    Weickert, Joachim
    Bruhn, Andres
    Karni, Zachi
    Seidel, Hans-Peter
    IMAGE ANALYSIS, PROCEEDINGS, 2007, 4522 : 173 - +
  • [9] A moment-based variational approach to tomographic reconstruction
    Milanfar, P
    Karl, WC
    Willsky, AS
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 1996, 5 (03) : 459 - 470
  • [10] METHODS OF MEASUREMENT AND RECONSTRUCTION FOR TOMOGRAPHIC RECORDS
    MEWES, D
    RENZ, R
    CHEMIE INGENIEUR TECHNIK, 1991, 63 (07) : 699 - 715