Asymptotics of the Smallest Singular Value of a Class of Toeplitz-generated Matrices II

被引:0
|
作者
Hermann Rabe
André C. M. Ran
机构
[1] North-West University,Unit for Business Mathematics and Informatics, School of Computer, Statistical and Mathematical sciences
[2] VU university,Department of Mathematics, Faculty of Sciences
[3] North-West University,Unit for Business Mathematics and Informatics
来源
关键词
Primary 15B05; Secondary 15A18; 47B35; Toeplitz matrices; singular values; finite sections;
D O I
暂无
中图分类号
学科分类号
摘要
Square matrices of the form Xn=Tn+fn(Tn-1)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${X_n = T_n + f_n(T_n^{-1})^*}$$\end{document}, where Tn is a n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n \times n}$$\end{document} invertible banded Toeplitz matrix and fn some positive sequence are considered. Convergence via an order estimate is proven for the difference of ‖Xn-1‖\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\|X_n^{-1}\|}$$\end{document} and a function depending only on fn. Fredholmness of the infinite counterpart of Tn is shown to greatly affect this result. A correction of a proof in the paper on which the current research is based, is appended as well.
引用
收藏
页码:243 / 253
页数:10
相关论文
共 41 条
  • [1] Asymptotics of the Smallest Singular Value of a Class of Toeplitz-generated Matrices II
    Rabe, Hermann
    Ran, Andre C. M.
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2014, 79 (02) : 243 - 253
  • [2] Asymptotics of the Smallest Singular Value of a Class of Toeplitz-Generated Matrices and Related Finite Rank Perturbations
    Rabe, Hermann
    Ran, Andre C. M.
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2013, 77 (03) : 385 - 396
  • [3] Asymptotics of the Smallest Singular Value of a Class of Toeplitz-Generated Matrices and Related Finite Rank Perturbations
    Hermann Rabe
    André C. M. Ran
    [J]. Integral Equations and Operator Theory, 2013, 77 : 385 - 396
  • [4] The smallest singular value of certain Toeplitz-related parametric triangular matrices
    Solary, Maryam Shams
    Kovacec, Alexander
    Capizzano, Stefano Serra
    [J]. SPECIAL MATRICES, 2021, 9 (01): : 103 - 111
  • [5] On the smallest singular value in the class of unit lower triangular matrices with entries in [-a, a]
    Altinisik, Ercan
    [J]. SPECIAL MATRICES, 2021, 9 (01): : 297 - 304
  • [6] Estimation of the eigenvalues and the smallest singular value of matrices
    Zou, Limin
    Jiang, Youyi
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (06) : 1203 - 1211
  • [7] On the smallest singular value of symmetric random matrices
    Jain, Vishesh
    Sah, Ashwin
    Sawhney, Mehtaab
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2022, 31 (04): : 662 - 683
  • [8] Smallest singular value of sparse random matrices
    Litvak, Alexander E.
    Rivasplata, Omar
    [J]. STUDIA MATHEMATICA, 2012, 212 (03) : 195 - 218
  • [9] On the smallest singular value in the class of invertible lower triangular (0,1) matrices
    Loewy, Raphael
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 608 : 203 - 213
  • [10] Smallest singular value of random matrices with independent columns
    Adamczak, Radoslaw
    Guedon, Olivier
    Litvak, Alexander
    Pajor, Alain
    Tomczak-Jaegermann, Nicole
    [J]. COMPTES RENDUS MATHEMATIQUE, 2008, 346 (15-16) : 853 - 856