Minimal number of periodic points of smooth boundary-preserving self-maps of simply-connected manifolds

被引:0
|
作者
Grzegorz Graff
Jerzy Jezierski
机构
[1] Gdansk University of Technology,Faculty of Applied Physics and Mathematics
[2] Warsaw University of Life Sciences (SGGW),Institute of Applications of Mathematics
来源
Geometriae Dedicata | 2017年 / 187卷
关键词
Periodic points; Boundary-preserving maps; Nielsen number; Fixed point index; Smooth maps; Primary 37C25; 55M20; Secondary 37C05;
D O I
暂无
中图分类号
学科分类号
摘要
Let M be a smooth compact and simply-connected manifold with simply-connected boundary ∂M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial M$$\end{document}, r be a fixed odd natural number. We consider f, a C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document} self-map of M, preserving ∂M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial M$$\end{document}. Under the assumption that the dimension of M is at least 4, we define an invariant Dr(f;M,∂M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_r(f;M,\partial M)$$\end{document} that is equal to the minimal number of r-periodic points for all maps preserving ∂M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial M$$\end{document} and C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}-homotopic to f. As an application, we give necessary and sufficient conditions for a reduction of a set of r-periodic points to one point in the C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}-homotopy class.
引用
收藏
页码:241 / 258
页数:17
相关论文
共 30 条