The Jordan-Hölder theorem with uniqueness for groups and semimodular lattices

被引:0
|
作者
Gábor Czédli
E. Tamás Schmidt
机构
[1] University of Szeged,
[2] Bolyai Institute,undefined
[3] Mathematical Institute of the Budapest University of Technology and Economics,undefined
来源
Algebra universalis | 2011年 / 66卷
关键词
Primary: 06C10; Secondary: 20D35; Jordan-Hölder theorem; semimodular lattice; slim lattice; planar lattice; group; composition series; subnormal subgroup; chief series;
D O I
暂无
中图分类号
学科分类号
摘要
For subnormal subgroups \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A{\vartriangleleft}B}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C{\vartriangleleft}D}$$\end{document} of a given group G, the factor B/A will be called subnormally down-and-up projective to D/C if there are subnormal subgroups \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${X{\vartriangleleft}Y}$$\end{document} such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${AY = B, A \cap Y = X, CY = D}$$\end{document} , and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C \cap Y = X}$$\end{document} . Clearly, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${B/A \cong D/C}$$\end{document} in this case. As G. Grätzer and J. B. Nation have recently pointed out, the standard proof of the classical Jordan-Hölder theorem yields somewhat more than is widely known; namely, the factors of any two given composition series are the same up to subnormal down-and-up projectivity and a permutation. We prove the uniqueness of this permutation.
引用
收藏
相关论文
共 50 条