Quasi-optimal convergence rates for adaptive boundary element methods with data approximation, part I: weakly-singular integral equation

被引:0
|
作者
Michael Feischl
Thomas Führer
Michael Karkulik
Jens Markus Melenk
Dirk Praetorius
机构
[1] Vienna University of Technology,Institute for Analysis and Scientific Computing
[2] Pontificia Universidad Católica de Chile,Departamento de Matemáticas
来源
Calcolo | 2014年 / 51卷
关键词
Boundary element method; Weakly-singular integral equation; A posteriori error estimate; Adaptive algorithm ; Convergence; Optimality; 65N30; 65N38; 65N50; 65R20; 41A25;
D O I
暂无
中图分类号
学科分类号
摘要
We analyze an adaptive boundary element method for Symm’s integral equation in 2D and 3D which incorporates the approximation of the Dirichlet data g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g$$\end{document} into the adaptive scheme. We prove quasi-optimal convergence rates for any H1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{1/2}$$\end{document}-stable projection used for data approximation.
引用
收藏
页码:531 / 562
页数:31
相关论文
共 11 条
  • [1] Quasi-optimal convergence rates for adaptive boundary element methods with data approximation, part I: weakly-singular integral equation
    Feischl, Michael
    Fuehrer, Thomas
    Karkulik, Michael
    Melenk, Jens Markus
    Praetorius, Dirk
    CALCOLO, 2014, 51 (04) : 531 - 562
  • [2] QUASI-OPTIMAL CONVERGENCE RATES FOR ADAPTIVE BOUNDARY ELEMENT METHODS WITH DATA APPROXIMATION. PART II: HYPER-SINGULAR INTEGRAL EQUATION
    Feischl, Michael
    Fuehrer, Thomas
    Karkulik, Michael
    Melenk, J. Markus
    Praetorius, Dirk
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2015, 44 : 153 - 176
  • [3] Quasi-optimal convergence rates for adaptive boundary element methods with data approximation. Part II: Hyper-singular integral equation
    Feischl, Michael
    Führer, Thomas
    Karkulik, Michael
    Melenk, J. Markus
    Praetorius, Dirk
    Electronic Transactions on Numerical Analysis, 2015, 44 : 153 - 176
  • [4] Optimal convergence for adaptive IGA boundary element methods for weakly-singular integral equations
    Feischl, Michael
    Gantner, Gregor
    Haberl, Alexander
    Praetorius, Dirk
    NUMERISCHE MATHEMATIK, 2017, 136 (01) : 147 - 182
  • [5] Optimal convergence for adaptive IGA boundary element methods for weakly-singular integral equations
    Michael Feischl
    Gregor Gantner
    Alexander Haberl
    Dirk Praetorius
    Numerische Mathematik, 2017, 136 : 147 - 182
  • [6] QUASI-OPTIMAL CONVERGENCE RATE FOR AN ADAPTIVE BOUNDARY ELEMENT METHOD
    Feischl, M.
    Karkulik, M.
    Melenk, J. M.
    Praetorius, D.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (02) : 1327 - 1348
  • [7] Reliable and efficient a posteriori error estimation for adaptive IGA boundary element methods for weakly-singular integral equations
    Feischl, Michael
    Gantner, Gregor
    Praetorius, Dirk
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 290 : 362 - 386
  • [8] A UNIFIED ANALYSIS OF QUASI-OPTIMAL CONVERGENCE FOR ADAPTIVE MIXED FINITE ELEMENT METHODS
    Hu, Jun
    Yu, Guozhu
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (01) : 296 - 316
  • [9] Adaptive BEM for elliptic PDE systems, part I: abstract framework, for weakly-singular integral equations
    Gantner, Gregor
    Praetorius, Dirk
    APPLICABLE ANALYSIS, 2022, 101 (06) : 2085 - 2118
  • [10] Finite element approximation for a delayed generalized Burgers-Huxley equation with weakly singular kernels: Part I Well-posedness, regularity and conforming approximation
    Mahajan, Sumit
    Khan, Arbaz
    Mohan, Manil T.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 174 : 261 - 286