Nodal Statistics for the Van Vleck Polynomials

被引:0
|
作者
Alain Bourget
机构
[1] Department of Mathematics,
[2] Johns Hopkins University,undefined
[3] 3400 North Charles Street,undefined
[4] 404 Krieger Hall,undefined
[5] Baltimore,undefined
[6] MD,undefined
[7] 21218,undefined
[8] USA. E-mail: abourget@math.jhu.edu,undefined
来源
关键词
Spacing Distribution; Polynomial Solution; Level Spacing; Level Spacing Distribution;
D O I
暂无
中图分类号
学科分类号
摘要
 The Van Vleck polynomials naturally arise from the generalized Lamé equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} as the polynomials \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} of degree \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} for which Eq. (1) has a polynomial solution of some degree k. In this paper, we compute the limiting distribution, as well as the limiting mean level spacings distribution of the zeros of any Van Vleck polynomial as N → ∞.
引用
收藏
页码:503 / 516
页数:13
相关论文
共 50 条