Closed-Form Solution of Conic in Point-Line Enumerative Problem of Conic

被引:0
|
作者
Guo, Yang [1 ]
机构
[1] Northeastern Univ, Dept Math, Shenyang 110819, Liaoning, Peoples R China
关键词
Real enumerative geometry; Conic; Closed-form solution; Reciprocal transformation; GEOMETRY;
D O I
10.1007/s00373-024-02793-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use the reciprocal transformation to propose the closed-form solutions to the conics through m points and tangent to n lines satisfying m+n=5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m+n=5$$\end{document} in general position. We also derive the algebraic and geometric necessary and sufficient conditions for the non-degenerate real conics.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] SOLUTION OF THE DIRICHLET PROBLEM FOR CONIC ELECTRODES IN CLOSED FORMS
    BARANOVA, LA
    NARYLKOV, SG
    YAVOR, SY
    [J]. ZHURNAL TEKHNICHESKOI FIZIKI, 1987, 57 (01): : 156 - 158
  • [2] HAMILTON ANGLE CHARACTERISTIC IN CLOSED-FORM FOR GENERALLY CONFIGURED CONIC AND TORIC INTERFACES
    FORBES, GW
    STONE, BD
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1993, 10 (06): : 1270 - 1278
  • [3] Closed-form solution of a maximization problem
    Cottle, Richard W.
    Olkin, Ingram
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2008, 42 (04) : 609 - 617
  • [4] Closed-form solution of a maximization problem
    Richard W. Cottle
    Ingram Olkin
    [J]. Journal of Global Optimization, 2008, 42 : 609 - 617
  • [5] An analytical closed-form solution for multiple line supplier selection problem
    Pearn, W. L.
    Tai, Y. T.
    Tseng, S. C.
    [J]. QUALITY TECHNOLOGY AND QUANTITATIVE MANAGEMENT, 2019, 16 (04): : 377 - 388
  • [6] Design of symmetric conic-section flexure hinges based on closed-form compliance equations
    Lobontiu, N
    Paine, JSN
    Garcia, E
    Goldfarb, M
    [J]. MECHANISM AND MACHINE THEORY, 2002, 37 (05) : 477 - 498
  • [7] ESOQ: A closed-form solution to the Wahba problem
    Mortari, D
    [J]. JOURNAL OF THE ASTRONAUTICAL SCIENCES, 1997, 45 (02): : 195 - 204
  • [8] A Closed-Form Solution to the Geometric Goat Problem
    Ingo Ullisch
    [J]. The Mathematical Intelligencer, 2020, 42 : 12 - 16
  • [9] Closed-form Solution for a Moving Boundary Problem
    李栓虎
    [J]. Tsinghua Science and Technology, 1998, (04) : 1233 - 1235
  • [10] ESOQ: A Closed-Form Solution to the Wahba Problem
    Daniele Mortari
    [J]. The Journal of the Astronautical Sciences, 1997, 45 (2) : 195 - 204