The Terwilliger algebra of the halved folded 2n-cube from the viewpoint of its automorphism group action

被引:0
|
作者
Nanbin Cao
Sibo Chen
Na Kang
Lihang Hou
机构
[1] Hebei GEO University,School of Mathematics and Science
来源
关键词
Halved folded 2; -cube; Terwilliger algebra; Homogeneous component; 05C50; 05E15;
D O I
暂无
中图分类号
学科分类号
摘要
Let 12H¯(2n,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{2}{\overline{H}}(2n,2)$$\end{document} denote the halved folded 2n-cube with vertex set X and let T:=T(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T{:}{=}T(x)$$\end{document} denote the Terwilliger algebra of 12H¯(2n,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{2}{\overline{H}}(2n,2)$$\end{document} with respect to a fixed vertex x. In this paper, we assume n≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 4$$\end{document} and show that T coincides with the centralizer algebra of the stabilizer of x in the automorphism group of 12H¯(2n,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{2}{\overline{H}}(2n,2)$$\end{document} by considering the action of this automorphism group on the set X×X×X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X\times X\times X$$\end{document}. Then, we further describe the structure of T for the case n=2D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=2D$$\end{document} and D≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D\ge 3$$\end{document}. The decomposition of T will be given by using the homogeneous components of V:=CX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V{:}{=}{\mathbb {C}}^X$$\end{document}, each of which is a nonzero subspace of V spanned by the irreducible T-modules that are isomorphic. Moreover, we display a computable basis for every homogeneous component of V.
引用
收藏
页码:229 / 248
页数:19
相关论文
共 17 条
  • [1] The Terwilliger algebra of the halved folded 2n-cube from the viewpoint of its automorphism group action
    Cao, Nanbin
    Chen, Sibo
    Kang, Na
    Hou, Lihang
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2022, 56 (01) : 229 - 248
  • [2] The Terwilliger algebra of the halved n-cube from the viewpoint of its automorphism group action
    Hou, Lihang
    Hou, Bo
    Kang, Na
    Gao, Suogang
    EUROPEAN JOURNAL OF COMBINATORICS, 2022, 101
  • [3] The Terwilliger algebra of the Johnson scheme J(N, D) revisited from the viewpoint of group representations
    Tan, Ying-Ying
    Fan, Yi-Zheng
    Ito, Tatsuro
    Liang, Xiaoye
    EUROPEAN JOURNAL OF COMBINATORICS, 2019, 80 : 157 - 171
  • [4] The Derivation Algebra and Automorphism Group of the Twisted N=2 Superconformal Algebra
    Fa, Huanxia
    Han, Jianzhi
    Yue, Xiaoqing
    ALGEBRA COLLOQUIUM, 2016, 23 (03) : 443 - 454
  • [5] Derivation algebra and automorphism group of generalized Ramond N = 2 superconformal algebra
    Jiayuan Fu
    Yongcun Gao
    Frontiers of Mathematics in China, 2009, 4 : 637 - 650
  • [6] Derivation algebra and automorphism group of generalized topological N = 2 superconformal algebra
    Hengyun Yang
    Yafeng Yu
    Tingfu Yao
    Frontiers of Mathematics in China, 2013, 8 : 973 - 986
  • [7] Derivation algebra and automorphism group of generalized topological N=2 superconformal algebra
    Yang, Hengyun
    Yu, Yafeng
    Yao, Tingfu
    FRONTIERS OF MATHEMATICS IN CHINA, 2013, 8 (04) : 973 - 986
  • [8] Derivation algebra and automorphism group of generalized Ramond N=2 superconformal algebra
    Fu, Jiayuan
    Gao, Yongcun
    FRONTIERS OF MATHEMATICS IN CHINA, 2009, 4 (04) : 637 - 650
  • [9] DETERMINING AN ATOMIC BOOLEAN-ALGEBRA FROM THE ACTION OF THE AUTOMORPHISM GROUP
    DAULETBAEV, BK
    SIBERIAN MATHEMATICAL JOURNAL, 1993, 34 (06) : 1041 - 1043
  • [10] The Terwilliger algebra of the Grassmann scheme Jq(N, D) revisited from the viewpoint of the quantum affine algebra Uq((sl)over-cap2)
    Liang, Xiaoye
    Ito, Tatsuro
    Watanabe, Yuta
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 596 : 117 - 144