In situ IR, Raman, and UV-Vis DRS spectroscopy of supported vanadium oxide catalysts during methanol oxidation

被引:0
|
作者
Loyd J. Burcham
Goutam Deo
Xingtao Gao
Israel E. Wachs
机构
[1] Lehigh University,Zettlemoyer Center for Surface Studies and Department of Chemical Engineering
[2] Bethlehem,Department of Chemical Engineering
[3] Indian Institute of Technology,undefined
来源
Topics in Catalysis | 2000年 / 11-12卷
关键词
in situ spectroscopy; methanol oxidation; oxide catalysts; vanadia; Raman; infrared, UV-Vis;
D O I
暂无
中图分类号
学科分类号
摘要
The application of in situ Raman, IR, and UV-Vis DRS spectroscopies during steady-state methanol oxidation has demonstrated that the molecular structures of surface vanadium oxide species supported on metal oxides are very sensitive to the coordination and H-bonding effects of adsorbed methoxy surface species. Specifically, a decrease in the intensity of spectral bands associated with the fully oxidized surface (V5+) vanadia active phase occurred in all three studied spectroscopies during methanol oxidation. The terminal V = O (∼1030 cm−1) and bridging V–O–V (∼900–940 cm−1) vibrational bands also shifted toward lower frequency, while the in situ UV-Vis DRS spectra exhibited shifts in the surface V5+ LMCT band (>25,000 cm−1) to higher edge energies. The magnitude of these distortions correlates with the concentration of adsorbed methoxy intermediates and is most severe at lower temperatures and higher methanol partial pressures, where the surface methoxy concentrations are greatest. Conversely, spectral changes caused by actual reductions in surface vanadia (V5+) species to reduced phases (V3+/V4+) would have been more severe at higher temperatures. Moreover, the catalyst (vanadia/silica) exhibiting the greatest shift in UV-Vis DRS edge energy did not exhibit any bands from reduced V3+/V4+ phases in the d–d transition region (10,000–30,000 cm−1), even though d–d transitions were detected in vanadia/alumina and vanadia/zirconia catalysts. Therefore, V5+ spectral signals are generally not representative of the percent vanadia reduction during the methanol oxidation redox cycle, although estimates made from the high temperature, low methoxy surface coverage IR spectra suggest that the catalyst surfaces remain mostly oxidized during steady-state methanol oxidation (15–25% vanadia reduction). Finally, adsorbed surface methoxy intermediate species were easily detected with in situ IR spectroscopy during methanol oxidation in the C–H stretching region (2800–3000 cm−1) for all studied catalysts, the vibrations occurring at different frequencies depending on the specific metal oxide upon which they chemisorb. However, methoxy bands were only found in a few cases using in situ Raman spectroscopy due to the sensitivity of the Raman scattering cross-sections to the specific substrate onto which the surface methoxy species are adsorbed.
引用
收藏
页码:85 / 100
页数:15
相关论文
共 50 条
  • [1] In situ IR, Raman, and UV-Vis DRS spectroscopy of supported vanadium oxide catalysts during methanol oxidation
    Burcham, LJ
    Deo, G
    Gao, XT
    Wachs, IE
    [J]. TOPICS IN CATALYSIS, 2000, 11 (1-4) : 85 - 100
  • [2] Dynamic behavior of supported vanadia catalysts in the selective oxidation of ethane -: In situ Raman, UV-Vis DRS and reactivity studies
    Bañares, MA
    Martínez-Huerta, MV
    Gao, X
    Fierro, JLG
    Wachs, IE
    [J]. CATALYSIS TODAY, 2000, 61 (1-4) : 295 - 301
  • [3] DR UV-vis Study of the Supported Vanadium Oxide Catalysts
    Bulanek, Roman
    Capek, Libor
    Setnicka, Michal
    Cicmanec, Pavel
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (25): : 12430 - 12438
  • [4] CO Oxidation on Ceria Supported Gold Catalysts Studied by Combined Operando Raman/UV-Vis and IR Spectroscopy
    Schilling, Christian
    Hess, Christian
    [J]. TOPICS IN CATALYSIS, 2017, 60 (1-2) : 131 - 140
  • [5] Study on the effect of vanadium oxide in calcium phosphate glasses by Raman, IR and UV-vis spectroscopy
    Magdas, D. A.
    Vedeanu, N. S.
    Toloman, D.
    [J]. JOURNAL OF NON-CRYSTALLINE SOLIDS, 2015, 428 : 151 - 155
  • [6] Hydration effects on the molecular structure of silica-supported vanadium oxide catalysts: A combined IR, Raman, UV-vis and EXAFS study
    Keller, Daphne E.
    Visser, Tom
    Soulimani, Fouad
    Koningsberger, Diek C.
    Weckhuysen, Bert M.
    [J]. VIBRATIONAL SPECTROSCOPY, 2007, 43 (01) : 140 - 151
  • [7] In situ Raman spectroscopy during the partial oxidation of methane to formaldehyde over supported vanadium oxide catalysts
    Sun, Q
    Jehng, JM
    Hu, HC
    Herman, RG
    Wachs, IE
    Klier, K
    [J]. JOURNAL OF CATALYSIS, 1997, 165 (01) : 91 - 101
  • [8] CO Oxidation on Ceria Supported Gold Catalysts Studied by Combined Operando Raman/UV–Vis and IR Spectroscopy
    Christian Schilling
    Christian Hess
    [J]. Topics in Catalysis, 2017, 60 : 131 - 140
  • [9] Homogeneous Catalytic Processes Monitored by Combined in Situ ATR-IR, UV-Vis, and Raman Spectroscopy
    Grabow, Kathleen
    Bentrup, Ursula
    [J]. ACS CATALYSIS, 2014, 4 (07): : 2153 - 2164
  • [10] The effect of water on the structure of supported vanadium oxide structures. An FT-RAMAN, in situ DRIFT and in situ UV-VIS diffuse reflectance study
    VanDerVoort, P
    White, MG
    Mitchell, MB
    Verberckmoes, AA
    Vansant, EF
    [J]. SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 1997, 53 (12) : 2181 - 2187