Deep Learning for Stock Market Prediction Using Sentiment and Technical Analysis

被引:0
|
作者
Chatziloizos G.-M. [1 ]
Gunopulos D. [2 ]
Konstantinou K. [2 ]
机构
[1] PSL Research University, Paris
[2] Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens
关键词
Deep learning; Machine learning; Sentiment analysis; Stock market; Technical analysis;
D O I
10.1007/s42979-024-02651-5
中图分类号
学科分类号
摘要
Machine learning and deep learning techniques are applied by researchers with a background in both economics and computer science, to predict stock prices and trends. These techniques are particularly attractive as an alternative to existing models and methodologies because of their ability to extract abstract features from data. Most existing research approaches are based on using either numerical/economical data or textual/sentimental data. In this article, we use cutting-edge deep learning/machine learning approaches on both numerical/economical data and textual/sentimental data in order not only to predict stock market prices and trends based on combined data but also to understand how a stock's Technical Analysis can be strengthened by using Sentiment Analysis. Using the four tickers AAPL, GOOG, NVDA and S&P 500 Information Technology, we collected historical financial data and historical textual data and we used each type of data individually and in unison, to display in which case the results were more accurate and more profitable. We describe in detail how we analyzed each type of data, and how we used it to come up with our results. © The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2024.
引用
收藏
相关论文
共 50 条
  • [1] Stock Prediction using Deep Learning and Sentiment Analysis
    Xu, Yichuan
    Keselj, Vlado
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 5573 - 5580
  • [2] A cooperative deep learning model for stock market prediction using deep autoencoder and sentiment analysis
    Rekha, K. S.
    Sabu, M. K.
    PEERJ COMPUTER SCIENCE, 2022, 8
  • [3] A cooperative deep learning model for stock market prediction using deep autoencoder and sentiment analysis
    Rekha K.S.
    Sabu M.K.
    PeerJ Computer Science, 2022, 8
  • [4] Improving stock market prediction accuracy using sentiment and technical analysis
    Agrawal, Shubham
    Kumar, Nitin
    Rathee, Geetanjali
    Kerrache, Chaker Abdelaziz
    Calafate, Carlos T.
    Bilal, Muhammad
    ELECTRONIC COMMERCE RESEARCH, 2024,
  • [5] Harvesting social media sentiment analysis to enhance stock market prediction using deep learning
    Mehta, Pooja
    Pandya, Sharnil
    Kotecha, Ketan
    PEERJ COMPUTER SCIENCE, 2021, 7 : 1 - 21
  • [6] Deep-learning-based stock market prediction incorporating ESG sentiment and technical indicators
    Lee, Haein
    Kim, Jang Hyun
    Jung, Hae Sun
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [7] Indian Stock Market Prediction Using Machine Learning and Sentiment Analysis
    Pathak, Ashish
    Shetty, Nisha P.
    COMPUTATIONAL INTELLIGENCE IN DATA MINING, 2019, 711 : 595 - 603
  • [8] Stock Market Prediction Using Microblogging Sentiment Analysis and Machine Learning
    Koukaras, Paraskevas
    Nousi, Christina
    Tjortjis, Christos
    TELECOM, 2022, 3 (02): : 358 - 378
  • [9] Predicting the Brazilian Stock Market with Sentiment Analysis, Technical Indicators and Stock Prices: A Deep Learning Approach
    Carosia, Arthur Emanuel de Oliveira
    da Silva, Ana Estela Antunes
    Coelho, Guilherme Palermo
    COMPUTATIONAL ECONOMICS, 2024, : 2351 - 2378
  • [10] Predicting stock market by sentiment analysis and deep learning
    Akyuz, Sureyya Ozogur
    Atas, Pinar Karadayi
    Benkhaldoun, Aymane
    OPERATIONS RESEARCH AND DECISIONS, 2024, 34 (02) : 85 - 107