Half-Integer Point Defects in the Q-Tensor Theory of Nematic Liquid Crystals

被引:0
|
作者
G. Di Fratta
J. M. Robbins
V. Slastikov
A. Zarnescu
机构
[1] University of Bristol,School of Mathematics
[2] University of Sussex,Department of Mathematics
[3] Institute of Mathematics “Simion Stoilow”,undefined
来源
Journal of Nonlinear Science | 2016年 / 26卷
关键词
Nonlinear elliptic PDE system; Singular ODE system; Stability; Vortex; Liquid crystal defects;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate prototypical profiles of point defects in two-dimensional liquid crystals within the framework of Landau–de Gennes theory. Using boundary conditions characteristic of defects of index k/2, we find a critical point of the Landau–de Gennes energy that is characterised by a system of ordinary differential equations. In the deep nematic regime, b2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b^2$$\end{document} small, we prove that this critical point is the unique global minimiser of the Landau–de Gennes energy. For the case b2=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b^2=0$$\end{document}, we investigate in greater detail the regime of vanishing elastic constant L→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L \rightarrow 0$$\end{document}, where we obtain three explicit point defect profiles, including the global minimiser.
引用
收藏
页码:121 / 140
页数:19
相关论文
共 50 条
  • [1] Half-Integer Point Defects in the Q-Tensor Theory of Nematic Liquid Crystals
    Di Fratta, G.
    Robbins, J. M.
    Slastikov, V.
    Zarnescu, A.
    JOURNAL OF NONLINEAR SCIENCE, 2016, 26 (01) : 121 - 140
  • [2] Q-tensor model for electrokinetics in nematic liquid crystals
    Tovkach, O. M.
    Conklin, Christopher
    Calderer, M. Carme
    Golovaty, Dmitry
    Lavrentovich, Oleg D.
    Vinals, Jorge
    Walkington, Noel J.
    PHYSICAL REVIEW FLUIDS, 2017, 2 (05):
  • [3] Recent analytic development of the dynamic Q-tensor theory for nematic liquid crystals
    Xu, Xiang
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (06): : 2220 - 2246
  • [4] Global Well Posedness for a Q-tensor Model of Nematic Liquid Crystals
    Murata, Miho
    Shibata, Yoshihiro
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2022, 24 (02)
  • [5] Linear numerical schemes for a Q-tensor system for nematic liquid crystals
    Swain, Justin
    Tierra, Giordano
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 430
  • [6] Global Well Posedness for a Q-tensor Model of Nematic Liquid Crystals
    Miho Murata
    Yoshihiro Shibata
    Journal of Mathematical Fluid Mechanics, 2022, 24
  • [7] EFFICIENT MOVING MESH METHODS FOR Q-TENSOR MODELS OF NEMATIC LIQUID CRYSTALS
    MacDonald, Craig S.
    Mackenzie, John A.
    Ramage, Alison
    Newton, Christopher J. P.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (02): : B215 - B238
  • [8] Two-dimensional defects in nematic liquid crystals: Symmetrical flowing out of disclinations of half-integer strength
    Kushnareva, TV
    Kushnarev, SV
    Pershin, VK
    CRYSTALLOGRAPHY REPORTS, 1999, 44 (02) : 285 - 292
  • [9] Orientability and asymptotic convergence of Q-tensor flow of biaxial nematic liquid crystals
    Huang, Jinrui
    Lin, Junyu
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (05)
  • [10] Orientability and asymptotic convergence of Q-tensor flow of biaxial nematic liquid crystals
    Jinrui Huang
    Junyu Lin
    Calculus of Variations and Partial Differential Equations, 2022, 61