Positive solutions to fractional boundary-value problems with p-Laplacian on time scales

被引:0
|
作者
Kai Sheng
Wei Zhang
Zhanbing Bai
机构
[1] Shandong University of Science and Technology,College of Mathematics and System Science
来源
关键词
Conformable fractional derivative; Time scales; Fixed-point theorems on cone; -Laplacian operator; 34B15;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we consider the following boundary-value problem of nonlinear fractional differential equation with p-Laplacian operator: Dα(ϕp(Dαu(t)))=f(t,u(t)),t∈[0,1]T,u(0)=u(σ(1))=Dαu(0)=Dαu(σ(1))=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned}& D^{\alpha }\bigl(\phi_{p}\bigl(D^{\alpha }u(t)\bigr)\bigr)= f \bigl(t, u(t)\bigr),\quad t\in [0,1]_{T}, \\& u(0)= u\bigl(\sigma (1)\bigr)= D^{\alpha }u(0)= D^{\alpha }u\bigl(\sigma (1)\bigr)=0, \end{aligned}$$ \end{document} where 1<α≤2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1<\alpha \leq 2$\end{document} is a real number, the time scale T is a nonempty closed subset of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}$\end{document}. Dα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D^{\alpha }$\end{document} is the conformable fractional derivative on time scales, ϕp(s)=|s|p−2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\phi_{p}(s)=\vert s \vert ^{p-2}s$\end{document}, p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p>1$\end{document}, ϕp−1=ϕq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\phi_{p}^{-1}=\phi_{q}$\end{document}, 1/p+1/q=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1/p+1/q=1$\end{document}, and f:[0,σ(1)]×[0,+∞)→[0,+∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f:[0, \sigma (1)]\times [0,+ \infty )\to [0,+\infty )$\end{document} is continuous. By the use of the approach method and fixed-point theorems on cone, some existence and multiplicity results of positive solutions are acquired. Some examples are presented to illustrate the main results.
引用
收藏
相关论文
共 50 条
  • [1] Positive solutions to fractional boundary-value problems with p-Laplacian on time scales
    Sheng, Kai
    Zhang, Wei
    Bai, Zhanbing
    [J]. BOUNDARY VALUE PROBLEMS, 2018,
  • [2] EXISTENCE OF POSITIVE SOLUTIONS FOR p-LAPLACIAN THREE-POINT BOUNDARY-VALUE PROBLEMS ON TIME SCALES
    Sun, Hong-Rui
    Wang, Ying-Hai
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2008,
  • [3] POSITIVE SOLUTIONS TO BOUNDARY-VALUE PROBLEMS OF P-LAPLACIAN FRACTIONAL DIFFERENTIAL EQUATIONS WITH A PARAMETER IN THE BOUNDARY
    Han, Zhenlai
    Lu, Hongling
    Sun, Shurong
    Yang, Dianwu
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2012,
  • [4] Existence of positive solutions for p-Laplacian impulsive boundary value problems on time scales
    Fatma Tokmak
    Ilkay Y Karaca
    [J]. Journal of Inequalities and Applications, 2014
  • [5] Existence of positive solutions for p-Laplacian impulsive boundary value problems on time scales
    Tokmak, Fatma
    Karaca, Ilkay Y.
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [6] Positive solutions to mixed fractional p-Laplacian boundary value problems
    Guezane-Lakoud, Assia
    Rodriguez-Lopez, Rosana
    [J]. JOURNAL OF APPLIED ANALYSIS, 2023, 29 (01) : 49 - 58
  • [7] Positive solutions to boundary value problems of p-Laplacian with fractional derivative
    Dong, Xiaoyu
    Bai, Zhanbing
    Zhang, Shuqin
    [J]. BOUNDARY VALUE PROBLEMS, 2017,
  • [8] Positive solutions to boundary value problems of p-Laplacian with fractional derivative
    Xiaoyu Dong
    Zhanbing Bai
    Shuqin Zhang
    [J]. Boundary Value Problems, 2017
  • [9] TRIPLE POSITIVE SOLUTIONS FOR m-POINT BOUNDARY-VALUE PROBLEMS OF DYNAMIC EQUATIONS ON TIME SCALES WITH p-LAPLACIAN
    Dogan, Abdulkadir
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [10] Existence of multiple positive solutions for p-Laplacian multipoint boundary value problems on time scales
    Dogan, Abdulkadir
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2013,