In this article, we consider the following boundary-value problem of nonlinear fractional differential equation with p-Laplacian operator:
Dα(ϕp(Dαu(t)))=f(t,u(t)),t∈[0,1]T,u(0)=u(σ(1))=Dαu(0)=Dαu(σ(1))=0,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document} $$\begin{aligned}& D^{\alpha }\bigl(\phi_{p}\bigl(D^{\alpha }u(t)\bigr)\bigr)= f \bigl(t, u(t)\bigr),\quad t\in [0,1]_{T}, \\& u(0)= u\bigl(\sigma (1)\bigr)= D^{\alpha }u(0)= D^{\alpha }u\bigl(\sigma (1)\bigr)=0, \end{aligned}$$ \end{document} where 1<α≤2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$1<\alpha \leq 2$\end{document} is a real number, the time scale T is a nonempty closed subset of R\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathbb{R}$\end{document}. Dα\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$D^{\alpha }$\end{document} is the conformable fractional derivative on time scales, ϕp(s)=|s|p−2s\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\phi_{p}(s)=\vert s \vert ^{p-2}s$\end{document}, p>1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$p>1$\end{document}, ϕp−1=ϕq\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\phi_{p}^{-1}=\phi_{q}$\end{document}, 1/p+1/q=1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$1/p+1/q=1$\end{document}, and f:[0,σ(1)]×[0,+∞)→[0,+∞)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$f:[0, \sigma (1)]\times [0,+ \infty )\to [0,+\infty )$\end{document} is continuous. By the use of the approach method and fixed-point theorems on cone, some existence and multiplicity results of positive solutions are acquired. Some examples are presented to illustrate the main results.